OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 10438–10445

Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection

Jin Tae Kim, Jung Jin Ju, and Suntak Park  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10438-10445 (2012)
http://dx.doi.org/10.1364/OE.20.010438


View Full Text Article

Enhanced HTML    Acrobat PDF (1150 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For development of electro-optical printed circuit board (PCB) systems, PCB-compatible metal-slotted hybrid optical waveguide was proposed and its optical characteristics are investigated at a wavelength of 1.31 μm. To confine light in a metallic multilayered structure, a metal film with a wide trench is inserted at the center of a dielectric medium that is sandwiched between metal films of infinite width. A circularly symmetric spot of the guided mode was measured at the center of the metal-slotted optical waveguide, which is a good agreement with the theoretical prediction by using the finite-element method. The measured propagation loss is about 1.5 dB/cm. Successful transmission of 2.5 Gbps optical signal without any distortion of the eye diagram confirms that the proposed hybrid optical waveguide holds a potential transmission line for the PCB-compatible optical interconnection.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(200.4650) Optics in computing : Optical interconnects
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

History
Original Manuscript: March 16, 2012
Revised Manuscript: April 9, 2012
Manuscript Accepted: April 11, 2012
Published: April 20, 2012

Citation
Jin Tae Kim, Jung Jin Ju, and Suntak Park, "Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection," Opt. Express 20, 10438-10445 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-10438


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Sel. Top. Quantum Electron.2(1), 55–76 (1996). [CrossRef]
  2. A. F. J. Levi, “Optical interconnections in systems,” Proc. IEEE88(6), 750–757 (2000). [CrossRef]
  3. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE88(6), 728–749 (2000). [CrossRef]
  4. K. H. Hahn, “POLO-parallel optical links for gigabyte data communications,” in Proc. 8th Annu. Meeting LEOS, San Francisco, CA, 228–229 (1995).
  5. Y. S. Liu, R. J. Wojnarowski, W. A. Hennessy, J. P. Bristow, and A. Yue Liu, Peczalski, J. Rowlette, A. Plotts, J. Stack, M. Kadar-Kallen, J. Yardley, L. Eldada, R. M. Osgood, R. Scarmozzino, S. H. Lee, V. Ozgus, and S. Patra, “Polymer optical interconnect technology (POINT)-optoelectronic packaging and interconnect for board and backplane applications,” in Proc. 46th Electron. Compon. Technol. Conf., Orlando, FL, 308–315 (1996).
  6. L. J. Norton, F. Carney, N. Choi, C. K. Y. Chun, R. K. Denton, Jr., D. Diaz, J. Knapp, M. Meyering, C. Ngo, S. Planer, G. Raslun, E. Reyes, J. Sauvageau, D. B. Schwartz, S. G. Shook, J. Yoder, and Y. Wen, “OPTOBUSTM I: A production parallel fiber optical interconnect,” in Proc. 47th Electron. Compon. Technol. Conf., San Jose, CA, 204–209 (1997).
  7. H. Karstensen, L. Melchior, V. Plickert, K. Drogemuller, J. Blank, T. Wipiejewski, H.-D. Wolf, J. Wieland, G. Jeiter, R. Dal'Ara, and M. Blaser, “Parallel optical link (PAROLI) for multichannel gigabit rate interconnections,” in Proc. 48th Electron. Compon. Technol. Conf., Seattle, WA, 747–754 (1998).
  8. M. Usui, N. Sato, A. Ohki, N. Matsuura, N. Tanaka, K. Enbutsu, M. Amano, M. Hikita, T. Kagawa, K. Katsura, and Y. Ando, “ParaBIT-1: 60-Gb/s-throughput parallel optical interconnect module,” in Proc. 50th Electron. Compon. Technol. Conf., LasVegas, NV, 1252–1258 (2000).
  9. D. Krabe, F. Ebling, N. Arndt-Staufenbiel, G. Lang, and W. Scheel, “New technology for electrical/optical systems on module and board level: The EOCB approach,” in Proc. 50th Electron. Compon. Technol. Conf., Las Vegas, NV, 970–974 (2000).
  10. K. Schmieder and K.-J. Wolter, “Electro-optical printed circuit board (EOPCB),” in Proc. 50th Electron. Compon. Technol. Conf., Las Vegas, NV, 749–753 (2000).
  11. R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems (Wiley Interscience, 2001).
  12. FIMMWAVE. ver. 5.0, a vectorial waveguide solver. Photon Design, 2006.
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  14. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981). [CrossRef]
  15. J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express16(17), 13133–13138 (2008). [CrossRef] [PubMed]
  16. J. T. Kim, J. J. Ju, S. Park, S. K. Park, M.-S. Kim, J.-M. Lee, J.-S. Choe, M.-H. Lee, and S.-Y. Shin, “Silver stripe optical waveguide for chip-to-chip optical interconnection,” IEEE Photon. Technol. Lett.21(13), 902–904 (2009). [CrossRef]
  17. E. Griese, “A high-performance hybrid electrical-optical interconnection technology for high-speed electronic systems,” IEEE Trans. Adv. Packag.24(3), 375–383 (2001). [CrossRef]
  18. Y. Ishii, S. Koike, Y. Arai, and Y. Ando, “SMT-compatible large-tolerance “OptoBump” interface for interchip optical interconnections,” IEEE Trans. Adv. Packag.26(2), 122–127 (2003). [CrossRef]
  19. A. L. Glebov, D. Bhusari, P. Kohl, M. S. Bakir, J. D. Meindl, and M. G. Lee, “Flexible pillars for displacement compensation in optical chip assembly,” IEEE Photon. Technol. Lett.18(8), 974–976 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited