OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9341–9350

An accurate control of the surface wave using transformation optics

Rui Yang and Yang Hao  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9341-9350 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1014 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we study two surface wave control scenarios at microwave frequencies. The first is a surface wave traveling along an uneven interface with a triangular obstruction present on a grounded dielectric slab. The other is a surface wave that circumvents a metallic rhombus-shaped obstacle, which is partially buried in a flat grounded dielectric slab. With a consideration of the eigenmode properties of the surface wave, our proposed technique – based on transformation optics – offers an efficient and accurate way to perform the filed manipulation. On the one hand, we see that the surface wave is guided along the uneven interface with no scattering into the air, as the grounded dielectric slab is flat. On the other hand, we observe that the surface wave is capable of traversing the rhombus obstacle with no shadow left behind, as the obstacle is cloaked. This technique for surface wave control is also valid at higher frequency ranges, and can easily be extended to encompass other propagating modes.

© 2012 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: November 30, 2011
Revised Manuscript: March 19, 2012
Manuscript Accepted: March 23, 2012
Published: April 9, 2012

Rui Yang and Yang Hao, "An accurate control of the surface wave using transformation optics," Opt. Express 20, 9341-9350 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. E. Collin, Field Theory of Guided Waves (Wiley-IEEE Press, 1990).
  2. D. M. Pozar, Microwave Engineering (Wiley, 2005).
  3. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys.21(11), 1119–1128 (1950). [CrossRef]
  4. S. S. Attwood, “Surface wave propagation over a coated plane conductor,” J. Appl. Phys.22(4), 504–509 (1951). [CrossRef]
  5. H. Barlow and A. Cullen, “Surface waves,” Proc. IEE. 100, 329–347 (1953).
  6. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006). [CrossRef] [PubMed]
  7. U. Leonhardt, “Optical conformal mapping,” Science312(5781), 1777–1780 (2006). [CrossRef] [PubMed]
  8. D. Schurig, J. B. Pendry, and D. R. Smith, “Calculation of material properties and ray tracing in transformation media,” Opt. Express14(21), 9794–9804 (2006). [CrossRef] [PubMed]
  9. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett.101(20), 203901 (2008). [CrossRef] [PubMed]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science323(5912), 366–369 (2009). [CrossRef] [PubMed]
  11. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A79(6), 063825 (2009). [CrossRef]
  12. D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, “A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders,” Front. Phys. China5(3), 319–323 (2010). [CrossRef]
  13. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nat Commun1(3), 21 (2010). [CrossRef] [PubMed]
  14. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Transformation optics for plasmonics,” Nano Lett.10(6), 1985–1990 (2010). [CrossRef] [PubMed]
  15. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, “Transformational plasmon optics,” Nano Lett.10(6), 1991–1997 (2010). [CrossRef] [PubMed]
  16. M. Kadic, S. Guenneau, and S. Enoch, “Transformational plasmonics: cloak, concentrator and rotator for SPPs,” Opt. Express18(11), 12027–12032 (2010). [CrossRef] [PubMed]
  17. J. Renger, M. Kadic, G. Dupont, S. S. Aćimović, S. Guenneau, R. Quidant, and S. Enoch, “Hidden progress: broadband plasmonic invisibility,” Opt. Express18(15), 15757–15768 (2010). [CrossRef] [PubMed]
  18. P. A. Huidobro, M. L. Nesterov, L. Martín-Moreno, and F. J. García-Vidal, “Moulding the flow of surface plasmons using conformal and quasiconformal mappings,” New J. Phys.13(3), 033011 (2011). [CrossRef]
  19. T. Zentgraf, Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, “Plasmonic Luneburg and Eaton lenses,” Nat. Nanotechnol.6(3), 151–155 (2011). [CrossRef] [PubMed]
  20. J. Zhang, S. Xiao, M. Wubs, and N. A. Mortensen, “Surface plasmon wave adapter designed with transformation optics,” ACS Nano5(6), 4359–4364 (2011). [CrossRef] [PubMed]
  21. K. Muamer, D. Guillaume, T. M. Chang, S. Guenneau, and S. Enoch, “Curved trajectories on transformed metal surfaces: Luneburg lens, beam-splitter, invisibility carpet and black hole for surface plasmon polaritons,” http://arxiv.org/abs/1102.0900 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited