OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9351–9356

A 2.5 ns switching time Mach­Zehnder modulator in as-deposited a-Si:H

Sandro Rao, Giuseppe Coppola, Mariano A. Gioffrè, and Francesco G. Della Corte  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9351-9356 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A very simple and fast Mach­Zehnder electro-optic modulator based on a p-i-n configuration, operating at λ = 1.55 μm, has been fabricated at 170°C using the low cost technology of hydrogenated amorphous silicon (a-Si:H). In spite of the device simplicity, refractive index modulation was achieved through the free carrier dispersion effect resulting in characteristic rise and fall times of ~2.5 ns. By reverse biasing the p-i-n device, the voltage-length product was estimated to be Vπ∙Lπ = 40 V⋅cm both from static and dynamic measurements. Such bandwidth performance in as-deposited a-Si:H demonstrates the potential of this material for the fabrication of fast active photonic devices integrated on standard microelectronic substrates.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: December 19, 2011
Revised Manuscript: January 23, 2012
Manuscript Accepted: January 27, 2012
Published: April 9, 2012

Sandro Rao, Giuseppe Coppola, Mariano A. Gioffrè, and Francesco G. Della Corte, "A 2.5 ns switching time Mach­Zehnder modulator in as-deposited a-Si:H," Opt. Express 20, 9351-9356 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. C. Kimerling, D. Ahn, M. Beals, C.-Y. Hong, J. Liu, J. Michel, D. Pan, and D. K. Sparacin, “Electronic-photonic integrated circuits on the CMOS platform,” Proc. SPIE6125, 612502, 612502-10 (2006). [CrossRef]
  2. T. Pinguet, B. Analui, E. Balmater, D. Guckenberger, M. Harrison, R. Koumans, D. Kucharski, Y. Liang, G. Masini, A. Mekis, S. Mirsaidi, A. Narasimha, M. Peterson, D. Rines, V. Sadagopan, S. Sahni, T. J. Sleboda, D. Song, Y. Wang, B. Welch, J. Witzens, J. Yao, S. Abdalla, S. Gloeckner, and P. De Dobbelaer, “Monolithically Integrated High-Speed CMOS Photonic Transceivers,” in Proceedings of IEEE Conference on Group IV Photonics, 5th International Conference (2008).
  3. J. M. Fedeli, L. Di Cioccio, D. Marris-Morini, L. Vivien, R. Orobtchouk, P. Rojo-Romeo, C. Seassal, and F. Mandorlo, “Development of silicon photonics devices using microelectronic tools for the integration on top of a CMOS wafer,” Adv. Opt. Technol.2008, 1–15 (2008). [CrossRef]
  4. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011). [CrossRef] [PubMed]
  5. K. Preston, S. Manipatruni, A. Gondarenko, C. B. Poitras, and M. Lipson, “Deposited silicon high-speed integrated electro-optic modulator,” Opt. Express17(7), 5118–5124 (2009). [CrossRef] [PubMed]
  6. K. Lee, D. J. Shin, H. Ji, K. Na, S. G. Kim, J. Bok, Y. You, S. Kim, I. Joe, S. D. Suh, J. Pyo, Y. Shin, K. Ha, Y. D. Park, and C. H. Chung, “10Gb/s Silicon Modulator Based on Bulk-Silicon Platform for DRAM Optical Interface,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA033.
  7. K. Preston, P. Dong, B. Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett.92(15), 151104 (2008). [CrossRef]
  8. K. Preston, C. B. Poitras, M. Thompson, and M. Lipson, “Photonic devices in low-temperature laser-crystallized deposited silicon,” in Proceedings of Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS) (2010).
  9. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, “Amorphous silicon-based guided-wave passive and active devices for silicon integrated optoelectronics,” IEEE J. Sel. Top. Quantum Electron.4(6), 997–1002 (1998). [CrossRef]
  10. A. Harke, M. Krause, and J. Mueller, “Low-loss single mode amorphous silicon waveguides,” Electron. Lett.41(25), 1377–1378 (2005). [CrossRef]
  11. S. K. Selvaraja, E. Sleeckx, M. Schaekers, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Low-loss amorphous silicon-on-insulator technology for photonic integrated circuitry,” Opt. Commun.282(9), 1767–1770 (2009). [CrossRef]
  12. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  13. F. G. Della Corte, S. Rao, M. A. Nigro, F. Suriano, and C. Summonte, “Electro-optically induced absorption in alpha-Si:H/alpha-SiCN waveguiding multistacks,” Opt. Express16(10), 7540–7550 (2008). [CrossRef] [PubMed]
  14. S. Rao, F. G. Della Corte, C. Summonte, and F. Suriano, “Electro-optical modulating device based on a CMOS-compatible a-Si:H/a-SiCN multistack waveguide,” IEEE J. Sel. Top. Quantum Electron.16(1), 173–178 (2010). [CrossRef]
  15. K. Narayanan, A. W. Elshaari, and S. F. Preble, “Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides,” Opt. Express18(10), 9809–9814 (2010). [CrossRef] [PubMed]
  16. F. G. Della Corte, S. Rao, G. Coppola, and C. Summonte, “Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device,” Opt. Express19(4), 2941–2951 (2011). [CrossRef] [PubMed]
  17. RSoft Photonics CAD Layout User Guide, Rsoft Design Group, Inc. Physical Layer Division, 200 Executive Blvd. Ossining, NY 10562.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited