OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9396–9402

Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices

Tiehui Su, Ryan P. Scott, Stevan S. Djordjevic, Nicolas K. Fontaine, David J. Geisler, Xinran Cai, and S. J. B. Yoo  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9396-9402 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3280 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of −2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states.

© 2012 OSA

OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.4230) Fiber optics and optical communications : Multiplexing
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: February 6, 2012
Revised Manuscript: March 26, 2012
Manuscript Accepted: March 26, 2012
Published: April 9, 2012

Tiehui Su, Ryan P. Scott, Stevan S. Djordjevic, Nicolas K. Fontaine, David J. Geisler, Xinran Cai, and S. J. B. Yoo, "Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices," Opt. Express 20, 9396-9402 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev.2(4), 299–313 (2008). [CrossRef]
  3. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics3(2), 161–204 (2011). [CrossRef]
  4. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express12(22), 5448–5456 (2004). [CrossRef] [PubMed]
  5. J. Lin, X. C. Yuan, S. H. Tao, and R. E. Burge, “Multiplexing free-space optical signals using superimposed collinear orbital angular momentum states,” Appl. Opt.46(21), 4680–4685 (2007). [CrossRef] [PubMed]
  6. J. A. Anguita, M. A. Neifeld, and B. V. Vasic, “Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link,” Appl. Opt.47(13), 2414–2429 (2008). [CrossRef] [PubMed]
  7. I. B. Djordjevic and M. Arabaci, “LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication,” Opt. Express18(24), 24722–24728 (2010). [CrossRef] [PubMed]
  8. S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Efficient generation and control of different-order orbital angular momentum states for communication links,” J. Opt. Soc. Am. A28(1), 61–65 (2011). [CrossRef] [PubMed]
  9. P. Martelli, A. Gatto, P. Boffi, and M. Martinelli, “Free-space optical transmission with orbital angular momentum division multiplexing,” Electron. Lett.47(17), 972–973 (2011). [CrossRef]
  10. M. S. Soskin, V. N. Gorshkov, M. V. Vasnetsov, J. T. Malos, and N. R. Heckenberg, “Topological charge and angular momentum of light beams carrying optical vortices,” Phys. Rev. A56(5), 4064–4075 (1997). [CrossRef]
  11. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J.27, 379–423 (1948).
  12. R. Čelechovský and Z. Bouchal, “Optical implementation of the vortex information channel,” New J. Phys.9(9), 328 (2007). [CrossRef]
  13. C. R. Doerr and L. L. Buhl, “Circular grating coupler for creating focused azimuthally and radially polarized beams,” Opt. Lett.36(7), 1209–1211 (2011). [CrossRef] [PubMed]
  14. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2006).
  15. C. R. Doerr, N. K. Fontaine, M. Hirano, T. Sasaki, L. L. Buhl, and P. J. Winzer, “Silicon photonic integrated circuit for coupling to a ring-core multimode fiber for space-division multiplexing,” in European Conference on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Th.13.A.3.
  16. G. Li, “Recent advances in coherent optical communication,” Adv. Opt. Photonics1(2), 279–307 (2009). [CrossRef]
  17. T. Mizuochi, “Forward error correction,” in High Spectral Density Optical Communication Technologies, M. Nakazawa, K. Kikuchi, and T. Miyazaki, eds. (Springer, 2010), 303–333.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited