OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9431–9441

Surface wave sensors based on nanometric layers of strongly absorbing materials

Yichen Zhang, Christophe Arnold, Peter Offermans, and Jaime Gómez Rivas  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9431-9441 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2276 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the excitation of guided modes in thin layers of strongly absorbing chalcogenide glasses. These modes are similar to surface plasmon polaritons in terms of resonance width and shift with changes in the permittivity of the surrounding medium. We exploit these characteristics to demonstrate a high sensitivity chalcogenide glass refractive index sensor that outperforms gold surface plasmon resonance sensors at short wavelengths in the visible. This demonstration opens a new range of possibilities for sensing using different materials.

© 2012 OSA

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(310.6860) Thin films : Thin films, optical properties
(310.2785) Thin films : Guided wave applications

ToC Category:
Optics at Surfaces

Original Manuscript: February 1, 2012
Revised Manuscript: March 27, 2012
Manuscript Accepted: March 27, 2012
Published: April 10, 2012

Yichen Zhang, Christophe Arnold, Peter Offermans, and Jaime Gómez Rivas, "Surface wave sensors based on nanometric layers of strongly absorbing materials," Opt. Express 20, 9431-9441 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Raether, Surface polaritons on smooth and rough surfaces and on gratings (Springer-Verlag, 1988).
  2. J. Homola, Surface plasmon resonance based sensors (Springer-Verlag, 2006). [CrossRef]
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008). [CrossRef] [PubMed]
  4. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47, 1927–1930 (1981). [CrossRef]
  5. P. Berini, “Plasmon polariton waves guided by thin lossy metal films of finite width,” Phys. Rev. B61, 10484–10503 (2001). [CrossRef]
  6. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol.23, 413–422 (2005). [CrossRef]
  7. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon.1, 484–588 (2009). [CrossRef]
  8. K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high precision surface plasmon resonance sensors,” Opt. Lett.15, 75–77 (1990). [CrossRef] [PubMed]
  9. G. G. Nenningera, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high resolution surface plasmon resonance sensors,” Sens. Act. B74, 145–151 (2001). [CrossRef]
  10. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett.89, 101106 (2006). [CrossRef]
  11. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics2, 97–106 (2007). [CrossRef]
  12. G. J. Kovacs, “Surface polariton in the ATR angular spectra of a thin iron film bounded by dielectric layers,” J. Opt. Soc. Am.68, 1325–1332 (1978). [CrossRef]
  13. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B44, 5855–5872 (1991). [CrossRef]
  14. V. Giannini, Y. Zhang, M. Forcales, and J. Gómez Rivas, “Long-range surface polaritons in ultra-thin films of silicon,” Opt. Express16, 19674–19685 (2008). [CrossRef] [PubMed]
  15. C. Arnold, Y. Zhang, and J. Gómez Rivas, “Long range surface polaritons supported by lossy thin films,” Appl. Phys. Lett.96, 113108 (2010). [CrossRef]
  16. P. Yeh, Optical waves in layered media (John Wiley and Sons, 1988).
  17. K. Okamoto, Foundamentals of optical waveguides (Elsevier, 2006).
  18. L. H. Smith, M. C. Taylor, I. R. Hooper, and W. L. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt.55, 2929–2943 (2008). [CrossRef]
  19. J. Hu, V. Tarasov, A. Agarwal, L. Kimerling, N. Carlie, L. Petit, and K. Richardson, “Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor,” Opt. Express15, 2307–2314 (2007). [CrossRef] [PubMed]
  20. S. Raoux and M. Wuttig, Phase change materials, science and applications (Springer-Verlag, 2008).
  21. K. Maex, M. R. Baklanov, D. Shamiryan, F. lacopi, S. H. Brongersma, and Z. S. Yanovitskaya “Low dielectric constant materials for microelectronics,” J. Appl. Phys.93, 8793–8841 (2003). [CrossRef]
  22. A. Kruis, “Die äquivalentdisperision von starken elektrolyten in lösung,” Z. Phys. Chem. B34, 13–50 (1936).
  23. J. Gent, P. Lambeck, H. Kreuwel, and T. Popma, “Optimization of a chemooptical surface plasmon resonance based sensor,” App. Opt.29, 2843–2849 (1990). [CrossRef]
  24. L. J. Sherry, S. -H. Chang, G. C. Schatz, and R. P. Van Duyne , “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett.5, 2034–2038 (2005). [CrossRef] [PubMed]
  25. R. Jha and A. K. Sharma, “High-performance sensor based on surface plasmon resonance with chalcogenide prism and aluminum for detection in infrared,” Opt. Lett.34, 749–751(2009). [CrossRef] [PubMed]
  26. M. Svedendahl, S. Chen, A. Dmitriev, and M. Käll, “Refractometric sensing using propagating versus localized surface plasmons: A direct comparison,” Nano Lett.9, 4428–4433 (2009). [CrossRef] [PubMed]
  27. RIU stands for refractive index units. A FoM of 1 RIU−1 means that the resonance shifts 1 degree when the refractive index changes by 1.
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited