OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9493–9500

Excitation control of long-range surface plasmons by two incident beams

Masashi Miyata and Junichi Takahara  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9493-9500 (2012)
http://dx.doi.org/10.1364/OE.20.009493


View Full Text Article

Enhanced HTML    Acrobat PDF (2492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the excitation control of long-range surface plasmon polaritons (LRSPs) by experiments and simulations. We find that LRSPs and short-range surface plasmon polaritons can be selectively excited by two incident beams. This mechanism enables us to realize the excitation control of LRSPs using the phase difference or the intensity ratio between the two input signals. The excitation method analyzed here can be applied to active plasmonic devices based on LRSPs.

© 2012 OSA

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: March 6, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 3, 2012
Published: April 10, 2012

Citation
Masashi Miyata and Junichi Takahara, "Excitation control of long-range surface plasmons by two incident beams," Opt. Express 20, 9493-9500 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9493


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one dimensional optical beam with nanometer diameter,” Opt. Lett.22, 475–477 (1997). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhelvonyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4, 83–91 (2010). [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61, 44–50 (2008). [CrossRef]
  4. K. F. MacDonald, Z. L. Sámson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics3, 55–58 (2008). [CrossRef]
  5. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett.9, 897–902 (2009). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford, 2009).
  7. M. L. Brongersma and V. M. Shalaev, “The case for plasmonics,” Science328, 440–441 (2010). [CrossRef] [PubMed]
  8. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett.11, 471–475 (2011). [CrossRef]
  9. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6, 16–24 (2012). [CrossRef]
  10. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B33, 5186–5201 (1986). [CrossRef]
  11. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24, 1011–1013 (1999). [CrossRef]
  12. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width:Bound modes of symmetric structures,” Phys. Rev. B61, 10484 (2000). [CrossRef]
  13. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjar, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” IEEE J. Lightwave Technol.23, 413–422 (2005). [CrossRef]
  14. J. T. Kim, J. J. Ju, S. Park, M.-s. Kim, S. K. Park, and M.-H. Lee, “Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express16, 13133–13138 (2008). [CrossRef] [PubMed]
  15. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, and D. R. Smith, “Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends,” Phys. Rev. A77, 021804 (2008). [CrossRef]
  16. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett.85, 5833–5835 (2004). [CrossRef]
  17. P. Berini, R. Charbonneau, S. Jetté-Charbonneau, N. Lahoud, and G. Mattiussi, “Long-range surface plasmon-polariton waveguides and devices in lithium niobate,” J. Appl. Phys.103, 113114 (2007). [CrossRef]
  18. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, “Observation of stimulated emission of surface plasmon polaritons,” Nano Lett.8, 3998–4001 (2008). [CrossRef] [PubMed]
  19. I. De Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nat. Photonics4, 382–387 (2010). [CrossRef]
  20. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News15, 54–59 (2004). [CrossRef]
  21. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86, 211101 (2005). [CrossRef]
  22. J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C, 87–94 (2007). [CrossRef]
  23. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93, 137404 (2004). [CrossRef] [PubMed]
  24. T. Inagaki, M. Motosuga, E. T. Arakawa, and J. P. Goudonnet, “Coupled surface plasmons in periodically corrugated thin silver films,” Phys. Rev. B32, 6238–6245 (1985). [CrossRef]
  25. H. Dohi, S. Tago, M. Fukui, and O. Tada, “Spatial dependence of reflected light intensity in ATR geometry: long-range surface plasmon polariton case,” Solid State Commun.55, 1023–1026 (1985). [CrossRef]
  26. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett.25, 844–847 (2000). [CrossRef]
  27. K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc.1182–EE13–05, 55 (2009).
  28. R. Zia, J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B74, 165415 (2006). [CrossRef]
  29. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nature Nanotech.2, 426–429 (2007). [CrossRef]
  30. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102, 203904 (2009). [CrossRef] [PubMed]
  31. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7, 2784–2788 (2007). [CrossRef] [PubMed]
  32. L. Cao and M. L. Brongersma, “Active plasmonics: ultrafast developments,” Nature Photon.3, 12–13 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited