OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9572–9580

High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires

Raja Ahmad and Martin Rochette  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9572-9580 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present polymer (PMMA) cladded chalcogenide (As2Se3) hybrid microwires that realize optical parametric four-wave mixing (FWM) with wavelength conversion bandwidth as broad as 190 nm and efficiency as high as 21 dB at peak input power levels as low as 70 mW. This represents 3-30 × increase in bandwidth and 30-50 dB improvement in conversion efficiency over previous demonstrations in tapered and microstructured chalcogenide fibers with the results agreeing well with the simulations. These properties, combined with small foot-print (10 cm length), low loss (<4 dB), ease of fabrication, and the transparency of As2Se3 from near-to-mid-infrared regions make this device a promising building block for lasers, optical instrumentation and optical communication devices.

© 2012 OSA

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

Original Manuscript: March 7, 2012
Revised Manuscript: April 3, 2012
Manuscript Accepted: April 4, 2012
Published: April 11, 2012

Raja Ahmad and Martin Rochette, "High efficiency and ultra broadband optical parametric four-wave mixing in chalcogenide-PMMA hybrid microwires," Opt. Express 20, 9572-9580 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide Photonics,” Nat. Photonics5, 141 (2011).
  2. J. Leuthold, C. Koos, and W. Freude, “Nonlinear Silicon Photonics,” Nat. Photonics4(8), 535–544 (2010). [CrossRef]
  3. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear Optics for High-Speed Digital Information Processing,” Science286(5444), 1523–1528 (1999). [CrossRef] [PubMed]
  4. K. Inoue and H. Toba, “Wavelength conversion experiment using fiber four-wave mixing,” IEEE Photon. Technol. Lett.4(1), 69–72 (1992). [CrossRef]
  5. E. Ciaramella and S. Trillo, “All-optical signal reshaping via four-wave mixing in optical fibers,” IEEE Photon. Technol. Lett.12(7), 849–851 (2000). [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008). [CrossRef]
  7. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, “All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion,” Opt. Express13(20), 7872–7877 (2005). [CrossRef] [PubMed]
  8. P. O. Hedekvist, M. Karlsson, and P. A. Andrekson, “Fiber four-wave mixing demultiplexing with inherent parametric amplification,” J. Lightwave Technol.15(11), 2051–2058 (1997). [CrossRef]
  9. M. Fridman, A. Farsi, Y. Okawachi, and A. L. Gaeta, “Demonstration of temporal cloaking,” Nature481(7379), 62–65 (2012). [CrossRef] [PubMed]
  10. S. Palomba, S. Zhang, Y. Park, G. Bartal, X. Yin, and X. Zhang, “Optical negative refraction by four-wave mixing in thin metallic nanostructures,” Nat. Mater.11(1), 34–38 (2011). [CrossRef] [PubMed]
  11. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “High bit rate all-optical signal processing in a fiber photonic wire,” Opt. Express16(15), 11506–11512 (2008). [CrossRef] [PubMed]
  12. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, and B. J. Eggleton, “Net-gain from a parametric amplifier on a chalcogenide optical chip,” Opt. Express16(25), 20374–20381 (2008). [CrossRef] [PubMed]
  13. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. Costa e Silva, K. Lenglé, M. Gay, T. Chartier, L. Brilland, D. Méchin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express19(26), B653–B660 (2011). [CrossRef] [PubMed]
  14. C.-S. Brès, S. Zlatanovic, A. O. J. Wiberg, and S. Radic, “Continuous-wave four-wave mixing in cm-long Chalcogenide microstructured fiber,” Opt. Express19(26), B621–B627 (2011). [CrossRef] [PubMed]
  15. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J.-I. Takahashi, and S.-I. Itabashi, “Four-wave mixing in silicon wire waveguides,” Opt. Express13(12), 4629–4637 (2005). [CrossRef] [PubMed]
  16. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006). [CrossRef] [PubMed]
  17. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Four-wave-mixing-based wavelength conversion of 40-Gb/s nonreturn-to-zero signal using 40-cm bismuth oxide nonlinear optical fiber,” IEEE Photon. Technol. Lett.17(7), 1474–1476 (2005). [CrossRef]
  18. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, “Phase-matched three-wave mixing in silica fiber optical waveguides,” Appl. Phys. Lett.24(7), 308 (1974). [CrossRef]
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008). [CrossRef]
  20. A. Pasquazi, R. Ahmad, M. Rochette, M. Lamont, B. E. Little, S. T. Chu, R. Morandotti, and D. J. Moss, “All-optical wavelength conversion in an integrated ring resonator,” Opt. Express18(4), 3858–3863 (2010). [CrossRef] [PubMed]
  21. J. M. Harbold, F. Ö. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, “Highly nonlinear As-S-Se glasses for all-optical switching,” Opt. Lett.27(2), 119–121 (2002). [CrossRef] [PubMed]
  22. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, Y. Shimizugawa, and K. Hirao, “Third-order optical nonlinearities and their ultrafast response in Bi2O3–B2O3–SiO2 glasses,” J. Opt. Soc. Am. B16(11), 1904–1908 (1999). [CrossRef]
  23. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 mm pulses in high-index-contrast silicon-on-insulator waveguides,” Appl. Phys. Lett.84(6), 900–902 (2004). [CrossRef]
  24. C. Baker and M. Rochette, “Highly nonlinear hybrid AsSe-PMMA microtapers,” Opt. Express18(12), 12391–12398 (2010). [CrossRef] [PubMed]
  25. R. Ahmad and M. Rochette, “Photosensitivity at 1550 nm and Bragg grating inscription in As2Se3 chalcogenide microwires,” Appl. Phys. Lett.99(6), 0611091 (2011). [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics 4th Ed. (Academic Press, 2007).
  27. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE, J. Sel. Top. Quantum. Electron.8(3), 506–520 (2002). [CrossRef]
  28. J. A. Buck, Fundamentals of Optical Fibers, 2nd Edition (Wiley, 2004).
  29. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Fiber-based optical parametric amplifiers and their applications,” J. Opt. Soc. Am. B21, 1146–1155 (2004). [CrossRef]
  30. J. Swalen, R. Santo, M. Tacke, and J. Fischer, “Properties of polymeric thin films by integrated optical techniques,” IBM J. Res. Develop.21(2), 168–175 (1977). [CrossRef]
  31. V. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, “Nonlinear modal parameters of optical fibers: a full-vectorial approach,” J. Opt. Soc. Am. B12(10), 1933–1941 (1995). [CrossRef]
  32. C. Baker, R. Ahmad, and M. Rochette, “Simultaneous Measurement of the Core Diameter and the Numerical Aperture in Dual-Mode Step-Index Optical Fibers,” J. Lightwave Technol.29(24), 3834–3837 (2011). [CrossRef]
  33. R. Ahmad, S. Chatigny, and M. Rochette, “Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber,” Opt. Express18(19), 19983–19993 (2010). [CrossRef] [PubMed]
  34. R. Ahmad, M. Rochette, and C. Baker, “Fabrication of Bragg gratings in subwavelength diameter As2Se3 chalcogenide wires,” Opt. Lett.36(15), 2886–2888 (2011). [CrossRef] [PubMed]
  35. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications 1st Ed (Springer, 2007).
  36. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, “Bismuth-Oxide-Based Nonlinear Fiber With a High SBS Threshold and Its Application to Four-Wave-Mixing Wavelength Conversion Using a Pure Continuous-Wave Pump,” J. Lightwave Technol.24(1), 22–28 (2006). [CrossRef]
  37. M. R. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3) chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008). [CrossRef] [PubMed]
  38. M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Express16(2), 1300–1320 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited