OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9581–9590

Back-scattered detection yields viable signals in many conditions

Frederick B. Shipley and Ashley R. Carter  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9581-9590 (2012)
http://dx.doi.org/10.1364/OE.20.009581


View Full Text Article

Enhanced HTML    Acrobat PDF (818 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Precision position-sensing is required for many microscopy techniques. One promising method, back-scattered detection (BSD), is incredibly sensitive, allowing for position measurements at the level of tens of picometers in three dimensions. In BSD the position of a micron-sized bead is measured by back-scattering a focused laser beam off the bead and imaging the resulting interference pattern onto a detector. Since the detection system geometry is confined to one side of the objective, the technique is compatible with platforms that have restricted optical access (e.g. magnetic tweezers, atomic force microscopy, and microfluidics). However, general adoption of BSD may be limited according to a recent theory [Volpe et al., J. Appl. Phys. 102, 084701, 2007] that predicts diminished signals under certain conditions. We directly measured the BSD response while varying the experimental conditions, including bead radius, numerical aperture, and relative index. Contrary to the proposed theory, we find that all experimental conditions tested produced a viable signal for atomic-scale measurements.

© 2012 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Microscopy

History
Original Manuscript: March 8, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 2, 2012
Published: April 11, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Frederick B. Shipley and Ashley R. Carter, "Back-scattered detection yields viable signals in many conditions," Opt. Express 20, 9581-9590 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9581


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. C. Jordan and P. C. Anthony, “Design considerations for micro- and nanopositioning: leveraging the latest for biophysical applications,” Curr. Pharm. Biotechnol.10(5), 515–521 (2009). [CrossRef] [PubMed]
  2. S. O. R. Moheimani, “Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges,” Rev. Sci. Instrum.79(7), 071101 (2008). [CrossRef] [PubMed]
  3. R. Puers, “Capacitive sensors - when and how to use them,” Sens. Actuat. A37–8, 93–105 (1993).
  4. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997). [CrossRef]
  5. J. J. Dosch, D. J. Inman, and E. Garcia, “A self-sensing piezoelectric actuator for collocated control,” J. Intell. Mater. Syst. Struct.3(1), 166–185 (1992). [CrossRef]
  6. A. R. Carter, G. M. King, and T. T. Perkins, “Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D,” Opt. Express15(20), 13434–13445 (2007). [CrossRef] [PubMed]
  7. M. E. J. Friese, H. Rubinsztein-Dunlop, N. R. Heckenberg, and E. W. Dearden, “Determination of the force constant of a single-beam gradient trap by measurement of backscattered light,” Appl. Opt.35(36), 7112–7116 (1996). [CrossRef] [PubMed]
  8. U. F. Keyser, J. van der Does, C. Dekker, and N. H. Dekker, “Optical tweezers for force measurements on DNA in nanopores,” Rev. Sci. Instrum.77(10), 105105 (2006). [CrossRef]
  9. J. H. G. Huisstede, K. O. van der Werf, M. L. Bennink, and V. Subramaniam, “Force detection in optical tweezers using backscattered light,” Opt. Express13(4), 1113–1123 (2005). [CrossRef] [PubMed]
  10. G. M. King, A. R. Carter, A. B. Churnside, L. S. Eberle, and T. T. Perkins, “Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions,” Nano Lett.9(4), 1451–1456 (2009). [CrossRef] [PubMed]
  11. G. Volpe, G. Kozyreff, and D. Petrov, “Backscattering position detection for photonic force microscopy,” J. Appl. Phys.102(8), 084701 (2007). [CrossRef]
  12. W. Denk and W. W. Webb, “Optical measurement of picometer displacements of transparent microscopic objects,” Appl. Opt.29(16), 2382–2391 (1990). [CrossRef] [PubMed]
  13. K. Visscher, S. P. Gross, and S. M. Block, “Construction of multiple-beam optical traps with nanometer-resolution position sensing,” IEEE J. Sel. Top. Quantum Electron.2(4), 1066–1076 (1996). [CrossRef]
  14. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998). [CrossRef] [PubMed]
  15. A. Pralle, M. Prummer, E. L. Florin, E. H. K. Stelzer, and J. K. H. Hörber, “Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light,” Microsc. Res. Tech.44(5), 378–386 (1999). [CrossRef] [PubMed]
  16. A. R. Carter, G. M. King, T. A. Ulrich, W. Halsey, D. Alchenberger, and T. T. Perkins, “Stabilization of an optical microscope to 0.1 nm in three dimensions,” Appl. Opt.46(3), 421–427 (2007). [CrossRef] [PubMed]
  17. A. R. Carter, Y. Seol, and T. T. Perkins, “Precision surface-coupled optical-trapping assay with one-basepair resolution,” Biophys. J.96(7), 2926–2934 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited