OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9624–9639

Giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films

M. Chandra Sekhar, Mahi R. Singh, Shantanu Basu, and Sai Pinnepalli  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9624-9639 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Thin films of BixCe3-xFe5O12 with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of BixCe3-xFe5O12 epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found.

© 2012 OSA

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(310.1860) Thin films : Deposition and fabrication

ToC Category:
Thin Films

Original Manuscript: February 8, 2012
Revised Manuscript: March 15, 2012
Manuscript Accepted: March 19, 2012
Published: April 12, 2012

M. Chandra Sekhar, Mahi R. Singh, Shantanu Basu, and Sai Pinnepalli, "Giant Faraday rotation in BixCe3-xFe5O12 epitaxial garnet films," Opt. Express 20, 9624-9639 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Levy, “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron.8(6), 1300–1306 (2002). [CrossRef]
  2. A. K. Zvezdin and V. A. Kotov, Modern magneto-optics and magneto optical materials, (IOP publishing, Bristol, 1997).
  3. S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chakalov, and J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/Gd3Ga5O12 (111) films,” J. Appl. Phys.91(12), 9556–9560 (2002). [CrossRef]
  4. Z. C. Xu, “Magnetooptic caracteristiques of BiTbGaIG film/TbYbBiIG bulk crystal composite structure in 1550 nm band,” Appl. Phys. Lett.89(3), 032501 (2006). [CrossRef]
  5. R. G. David, Fiber Optic Reference Guide, 3rd ed. (Boston Focal Press, 2002), p. 5.
  6. G. B. Scott and D. E. Lacklison, “Magnetooptic properties and applications of bismuth substituted iron garnets,” IEEE Trans. Magn.12(4), 292–311 (1976). [CrossRef]
  7. T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in magneto-optics, Proceedings. Int. Symp. Magneto-optics, J. Magn. Soc. Jpn. 11, Supplement S1, 179–182 (1987).
  8. B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys.31(19), 2442–2446 (1998). [CrossRef]
  9. M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magneto photonic crystals,” J. Appl. Phys.85(8), 5768–5770 (1999). [CrossRef]
  10. Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial growth and properties of Bi-substituted yttrium-iron garnet films grown on (111) gadolinium-gallium-garnet substrates by using rf magnetron sputtering,” J. Korean Phys. Soc.43(3), 400–405 (2003).
  11. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12] magneto-optical photonic crystals,” Appl. Phys. Lett.87(12), 122504 (2005). [CrossRef]
  12. R. Lux, A. Heinrich, S. Leitenmeier, T. Korner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys.100(11), 113511 (2006). [CrossRef]
  13. M. Vasiliev, K. E. Alameh, V. A. Kotov, and Y. T. Lee, “ Nanostructured engineered materials with high magneto-optic performance for integrated photonics applications,” in Proceedings. IEEE Photonics Global @Singapore, (IPGC 2008).
  14. T. Shintaku, A. Tate, and S. Mino, “Ce-substituted yttrium iron garnet films prepared on Gd3Sc2Ga3O12 garnet substrates by sputter epitaxy,” Appl. Phys. Lett.71(12), 1640–1642 (1997). [CrossRef]
  15. L. Bi, H. S. Kim, G. F. Dionne, S. A. Speakman, D. Bono, and C. A. Ross, “Structural, magnetic, and magneto-optical properties of Co-doped CeO2-δ films,” J. Appl. Phys.103(7), 07D138 (2008). [CrossRef]
  16. M. Bolduc, A. R. Taussig, A. Rajamani, G. F. Dionne, and C. A. Ross, “Magnetism and magneto optical effects in Ce-Fe Oxides,” IEEE. Trans. Mag.42(10), 3093–3095 (2006). [CrossRef]
  17. D. C. Hutchings, “Prospects for the implementation of magneto-optic elements in optoelectronic integrated circuits: a personal perspective,” J. Phys. D.36(18), 2222–2229 (2003). [CrossRef]
  18. T. Körner, A. Heinrich, M. Weckerle, P. Roocks, and B. Strizker, “Integration of magneto-optical active bismuth iron garnet on nongarnet substrates,” J. Appl. Phys.103(7), 07B337 (2008). [CrossRef]
  19. J. Ostorero and M. Guillot, “Magneto-optical properties of Sc-substituted dysprosium iron garnet single crystals,” J. Appl. Phys.91(10), 7296–7298 (2002). [CrossRef]
  20. M. Chandra Sekhar, J. Y. Hwang, M. Ferrera, Y. Linzon, L. Razzari, C. Harnagea, M. Zaezjev, A. Pignolet, and R. Morandotti, “Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films,” Appl. Phys. Lett.94(18), 181916 (2009). [CrossRef]
  21. J. Y. Hwang, R. Morandotti, and A. Pignolet, “Strong Faraday rotation in Ce and Bi comodified epitaxial iron garnet films: valence control through strain engineering,” Appl. Phys. Lett.99(5), 051916 (2011). [CrossRef]
  22. B. M. Holmes and D. C. Hutchings, “Demonstration of quasi-phase-matched nonreciprocal polarization rotation in III-V semiconductor waveguides incorporating magneto-optic upper claddings,” Appl. Phys. Lett.88(6), 061116 (2006). [CrossRef]
  23. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics3(2), 91–94 (2009). [CrossRef]
  24. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. A. Ross, “On chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics5(12), 758–762 (2011). [CrossRef]
  25. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach-Zehnder interferometer,” Appl. Phys. Lett.76(16), 2158 (2000). [CrossRef]
  26. T. Mizumoto, K. Oochi, T. Harada, and Y. Naito, “Measurement of optical nonreciprocal phase shift in a Bi-substituted Gd3Fe5O12 film and application to waveguide-type optical circulator,” J. Lightwave Technol.4(3), 347–352 (1986). [CrossRef]
  27. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Application of magneto-optical waveguides in integrated optics,” J. Opt. Soc. Am. B22, 240–253 (2005). [CrossRef]
  28. H. Y. Wong, W. K. Tan, A. C. Bryce, J. H. Marsh, J. M. Arnold, A. Krysa, and M. Sorel, “Current injection tunable monolithically integrated InGaAs-InAlGaAs asymmetric Mach-Zehnder interferometer using quantum well intermixing,” IEEE Photon. Technol. Lett.17(8), 1677–1679 (2005). [CrossRef]
  29. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator, with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt.39(33), 6158–6164 (2000). [CrossRef] [PubMed]
  30. Y. Shoji, T. Mizumoto, H. Yokoi, I. W. Hsieh, and R. M. Osgood., “Magneto optical isolator with silicon waveguides fabricated by direct bonding,” Appl. Phys. Lett.92(7), 071117 (2008). [CrossRef]
  31. D. B. Chrisey and G. K. Hubler, Pulsed Laser Deposition of thin films (Wiley Interscience, 1994).
  32. A. Ohtomo and A. Tsukazaki, “Pulsed laser deposition of thin films superlattices based on ZnO,” Semicond. Sci. Technol.20(4), S1–S12 (2005). [CrossRef]
  33. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-led Growth of Functional Materials, (John Wiley & Sons, Inc, 2007), Chap. 1.
  34. M. Chandrasekhar, “Structural and dielectric properties of Ba0.5Sr0.5TiO3 thin films grown on LAO with homo-epitaxial layer for tunable applications,” Int. J. Mod. Phys. B18(15), 2153–2168 (2004). [CrossRef]
  35. M. Zaezjev, M. Chandrasekhar, M. Ferrera, L. Razzari, B. Holmes, M. Sorel, D. Hutchings, A. Pignolet, and R. Morandotti, “Crystallization of yttrium –iron garnet (YIG) in thin films: nucleation and growth aspect” in Proceedings of Materials and Hyperintegration Challenges in Next-Generation Interconnect technology, MRS proceedings (2007), 1036–M04–19.
  36. M. Zaezjev, M. Chandrasekhar, M. Ferrera, L. Razzari, A. Pignolet, R. Morandotti, B. Holmes, M. Sorel, and D. Hutchings, “Effect of the Foreign Phases on the crystallization and Growth of Magnetooptic garnet Films, in conference on Lasers and Electro-Optics/Quantum Electronics and Laser science Conference and Photonic Applications Systems Technologies, OSA technical digest (CD) (Optical Society of America, 2008) paper CThM5.
  37. W. K. Lee, H. Y. Wong, K. Y. Chan, T. K. Yong, S. S. Yap, and T. Y. Tou, “Effects of laser fluence on the structural properties of pulsed laser deposited ruthenium thin films” Appl. Phys. A. Mater. Sci. Process.100(2), 561–568 (2010). [CrossRef]
  38. S. Kang, S. Yin, V. Adyam, Q. Li, and Y. Zhu, “Bi3Fe4Ga1O12 Garnet properties and its application to ultrafast switching in the visible spectrum,” IEEE Trans. Magn.43(9), 3656–3660 (2007). [CrossRef]
  39. S. Geller and M. A. Gilleo, “The crystal structure and ferrimagnetism of yttrium–iron garnet Y3Fe2(FeO4)3,” J. Phys. Chem. Solids3(1–2), 30–36 (1957). [CrossRef]
  40. M. O. Scully and M. S. Zubary, Quantum optics, (Cambridge University Press, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited