OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9640–9649

A high-brightness source of polarization-entangled photons optimized for applications in free space

Fabian Steinlechner, Pavel Trojek, Marc Jofre, Henning Weier, Daniel Perez, Thomas Jennewein, Rupert Ursin, John Rarity, Morgan W. Mitchell, Juan P. Torres, Harald Weinfurter, and Valerio Pruneri  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9640-9649 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1643 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.

© 2012 OSA

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: February 15, 2012
Revised Manuscript: March 22, 2012
Manuscript Accepted: March 24, 2012
Published: April 12, 2012

Fabian Steinlechner, Pavel Trojek, Marc Jofre, Henning Weier, Daniel Perez, Thomas Jennewein, Rupert Ursin, John Rarity, Morgan W. Mitchell, Juan P. Torres, Harald Weinfurter, and Valerio Pruneri, "A high-brightness source of polarization-entangled photons optimized for applications in free space," Opt. Express 20, 9640-9649 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
  2. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000). [CrossRef] [PubMed]
  3. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett.76, 4656–4659 (1996). [CrossRef] [PubMed]
  4. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23, 880–884 (1969). [CrossRef]
  5. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Omer, M. Furst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys.3, 481–486 (2007). [CrossRef]
  6. X.-M. Jin, J.-G. Ren, B. Yang, Z.-H. Yi, F. Zhou, X.-F. Xu, S.-K. Wang, D. Yang, Y.-F. Hu, S. Jiang, T. Yang, H. Yin, K. Chen, C.-Z. Peng, and J.-W. Pan, “Experimental free-space quantum teleportation,” Nat. Photonics4, 376–381 (2010). [CrossRef]
  7. J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, “Ground to satellite secure key exchange using quantum cryptography,” New J. Phys.4, 82.1–82.21 (2002). [CrossRef]
  8. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source,” Phys. Rev. Lett.99, 120501 (2007). [CrossRef] [PubMed]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science290, 2282–2285 (2000). [CrossRef] [PubMed]
  10. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett.35, 802–804 (2010). [CrossRef] [PubMed]
  11. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75, 4337–4341 (1995). [CrossRef] [PubMed]
  12. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A60, R773–R776 (1999). [CrossRef]
  13. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett.92, 211103 (2008). [CrossRef]
  14. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express15, 15377–15386 (2007). [CrossRef] [PubMed]
  15. D. Ljunggren, M. Tengner, P. Marsden, and M. Pelton, “Theory and experiment of entanglement in a quasi-phase-matched two-crystal source,” Phys. Rev. A73, 032326 (2006). [CrossRef]
  16. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A69, 013807 (2004). [CrossRef]
  17. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010). [CrossRef]
  18. M. Fiorentino, S. M. Spillane, R. G. Beausoleil, T. D. Roberts, P. Battle, and M. W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007). [CrossRef] [PubMed]
  19. M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, “Three-color sagnac source of polarization-entangled photon pairs,” Opt. Express17, 23153–23159 (2009). [CrossRef]
  20. T. Kim, M. Fiorentino, and F. N. C. Wong, “Phase-stable source of polarization-entangled photons using a polarization sagnac interferometer,” Phys. Rev. A73, 012316 (2006). [CrossRef]
  21. P. Trojek, “Efficient generation of photonic entanglement and multiparty quantum communication,” Ph.D. thesis, LMU-Munich (2007).
  22. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A66, 033816 (2002). [CrossRef]
  23. A. Gallivanoni, I. Rech, D. Resnati, M. Ghioni, and S. Cova, “Monolithic active quenching and picosecond timing circuit suitable for large-area single-photon avalanche diodes,” Opt. Express14, 5021–5030 (2006). [CrossRef] [PubMed]
  24. M. N. Satyanarayan, A. Deepthy, and H. L. Bhat, “Potassium titanyl phosphate and its isomorphs: Growth, properties, and applications,” Crit. Rev. Solid State Mater. Sci.24, 103–191 (1999). [CrossRef]
  25. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005). [CrossRef]
  26. S. Palacios, R. de J. León-Montiel, M. Hendrych, A. Valencia, and J. P. Torres, “Flux enhancement of photons entangled in orbital angular momentum,” Opt. Express19, 14108–14120 (2011). [CrossRef] [PubMed]
  27. T. Jennewein, “Toolbox for quantum photonics in matlab. http://info.iqc.ca/qpl/ (accessed june 1, 2010).”.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited