OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9698–9704

Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion

Dominik Bauer, Ivo Zawischa, Dirk H. Sutter, Alexander Killi, and Thomas Dekorsy  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9698-9704 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (885 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate the generation of 1.1 ps pulses containing more than 41 µJ of energy directly out of an Yb:YAG thin-disk without any additional amplification stages. The laser oscillator operates in ambient atmosphere with a 3.5 MHz repetition rate and 145 W of average output power at a fundamental wavelength of 1030 nm. An average output power of 91.5 W at 515 nm was obtained by frequency doubling with a conversion efficiency exceeding 65%. Third harmonic generation resulted in 34 W at 343 nm at 34% efficiency.

© 2012 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.2620) Nonlinear optics : Harmonic generation and mixing

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 6, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 3, 2012
Published: April 12, 2012

Dominik Bauer, Ivo Zawischa, Dirk H. Sutter, Alexander Killi, and Thomas Dekorsy, "Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion," Opt. Express 20, 9698-9704 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Brunner, E. Innerhofer, S. V. Marchese, T. Südmeyer, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Powerful red-green-blue laser source pumped with a mode-locked thin disk laser,” Opt. Lett.29(16), 1921–1923 (2004). [CrossRef] [PubMed]
  2. L. Shah, M. E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50 W, 50 μJ, sub-picosecond fiber laser system,” Opt. Express14(25), 12546–12551 (2006). [CrossRef]
  3. P. Baum and A. H. Zewail, “Attosecond electron pulses for 4D diffraction and microscopy,” Proc. Natl. Acad. Sci. U.S.A.104(47), 18409–18414 (2007). [CrossRef] [PubMed]
  4. D. H. Sutter, J. Kleinbauer, D. Bauer, M. Wolf, C. Tan, R. Gebs, A. Budnicki, P. Wagenblast, and S. Weiler, “Ultrafast disk lasers and amplifiers,” Proc. SPIE8235, 82350X, 82350X-9 (2012). [CrossRef]
  5. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, and U. Keller, “16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser,” Opt. Lett.25(11), 859–861 (2000). [CrossRef] [PubMed]
  6. C. R. Saraceno, O. H. Heckl, C. R. Baer, C. Schriber, M. Golling, K. Beil, C. Kränkel, T. Südmeyer, G. Huber, and U. Keller, “Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser,” Appl Phys B published online (2012) DOI 10.1007/s00340-012-4900-5 [CrossRef]
  7. C. R. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, and U. Keller, “Femtosecond thin-disk laser with 141 W of average power,” Opt. Lett.35(13), 2302–2304 (2010). [CrossRef] [PubMed]
  8. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, and F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett.36(24), 4746–4748 (2011). [CrossRef] [PubMed]
  9. S. V. Marchese, T. Südmeyer, M. Golling, R. Grange, and U. Keller, “Pulse energy scaling to 5 microJ from a femtosecond thin disk laser,” Opt. Lett.31(18), 2728–2730 (2006). [CrossRef] [PubMed]
  10. C. Y. Teisset, H. Fattahi, A. Sugita, L. Turi, X. Gu, O. Pronin, V. Pervak, F. Kraus, and A. Apolonski, “700 nJ broad-band MHz optical parametric amplifier,” in Ultra Fast Optics (UFO VII) and High Field Short Wavelength (HFSW XIII) Conference Program, Arcachon, (2009), Conf. Proc., pp. 1–3.
  11. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, and U. Keller, “60-W average power in 810-fs pulses from a thin-disk Yb:YAG laser,” Opt. Lett.28(5), 367–369 (2003). [CrossRef] [PubMed]
  12. S. V. Marchese, C. R. Baer, A. G. Engqvist, S. Hashimoto, D. J. Maas, M. Golling, T. Südmeyer, and U. Keller, “Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level,” Opt. Express16(9), 6397–6407 (2008). [CrossRef] [PubMed]
  13. J. Neuhaus, J. Kleinbauer, A. Killi, S. Weiler, D. Sutter, and T. Dekorsy, “Passively mode-locked Yb:YAG thin-disk laser with pulse energies exceeding 13 microJ by use of an active multipass geometry,” Opt. Lett.33(7), 726–728 (2008). [CrossRef] [PubMed]
  14. J. Neuhaus, D. Bauer, J. Zhang, A. Killi, J. Kleinbauer, M. Kumkar, S. Weiler, M. Guina, D. H. Sutter, and T. Dekorsy, “Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry,” Opt. Express16(25), 20530–20539 (2008). [CrossRef] [PubMed]
  15. F. X. Kärtner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Opt. Lett.20(1), 16–18 (1995). [CrossRef] [PubMed]
  16. J. Neuhaus, D. Bauer, J. Kleinbauer, A. Killi, D. H. Sutter, and T. Dekorsy, “Numerical analysis of a sub-picosecond thin-disk laser oscillator with active multipass geometry showing a variation of pulse duration within one round trip,” J. Opt. Soc. Am. B27(1), 65–71 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited