OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9713–9725

Isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field

Hongchuan Du, Laoyong Luo, Xiaoshan Wang, and Bitao Hu  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9713-9725 (2012)
http://dx.doi.org/10.1364/OE.20.009713


View Full Text Article

Enhanced HTML    Acrobat PDF (6152 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field. It is found that the large initial population of the excited state can lead to the high density of the free electrons in the medium and the large distortion of the driving laser field after propagation, though it benefits large enhancement of harmonic intensity in single atom response. These effects can weaken the phase-match of the macroscopic supercontinuum. On the contrary, the small initial population of 4% can generate well phase-match intense supercontinuum. We also investigate an isolated attosecond pulse generation by using a filter centered on axis to select the harmonics in the far field. Our results reveal that the radius of the spatial filter should be chosen to be small enough to reduce the duration of the isolated attosecond pulse due to the curvature effect of spatiotemporal profiles of the generated attosecond pulses in the far field.

© 2012 OSA

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(300.6560) Spectroscopy : Spectroscopy, x-ray
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: February 7, 2012
Revised Manuscript: April 2, 2012
Manuscript Accepted: April 9, 2012
Published: April 13, 2012

Citation
Hongchuan Du, Laoyong Luo, Xiaoshan Wang, and Bitao Hu, "Isolated attosecond pulse generation from pre-excited medium with a chirped and chirped-free two-color field," Opt. Express 20, 9713-9725 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9713


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature419, 803–807 (2002). [CrossRef] [PubMed]
  2. T. Pfeifer, M. Abel, P. Nagel, A. Jullien, Z. Loh, M. Bell, D. Neumark, and S. Leone, “Time-resolved spectroscopy of attosecond quantum dynamics,” Chem. Phys. Lett.463, 11–24 (2008). [CrossRef]
  3. A. Cavalieri, N. Müller, T. Uphues, V. Yakovlev, A. Balthuška, B. Hovrath, B. Schmidt, L. Blumel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P. Echenique, R. Kienberger, F. Krausz, and U. Heinzmann, “Attosecond spectroscopy in condensed matter,” Nature449, 1029–1032 (2007). [CrossRef] [PubMed]
  4. E. Goulielmakis, M. Schultze, M. Hofstetter, V. Yakovlev, J. Gagnon, M. Uiberacker, A. Aquila, E. Gullikson, D. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-cycle nonlinear optics,” Science320, 1614–1617 (2008). [CrossRef] [PubMed]
  5. F. Ferrari, F. Calegari, M. Lucchini, C. Vozzi, S. Stagira, G. Sansone, and M. Nisoli, “High-energy isolated attosecond pulses generated by above-saturation few-cycle fields,” Nat. Photonics4, 875–879 (2010). [CrossRef]
  6. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science314, 443–446 (2006). [CrossRef] [PubMed]
  7. P. Tzallas, E. Skantzakis, C. Kalpouzos, E. Benis, G. Tsakiris, and D. Charalambidis, “Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields,” Nat. Phys.3, 846–850 (2007). [CrossRef]
  8. S. Gilbertson, S. Khan, Y. Wu, M. Chini, and Z. Chang, “Isolated attosecond pulse generation without the need to stabilize the carrier-envelope phase of driving lasers,” Phys. Rev. Lett.105, 093902 (2010). [CrossRef] [PubMed]
  9. X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. Khan, M. Chini, Y. Wu, K. Zhao, and Z. Chang, “Generation of isolated attosecond pulses with 20 to 28 femtosecond lasers,” Phys. Rev. Lett.103, 183901 (2009). [CrossRef] [PubMed]
  10. H. Mashiko, S. Gilbertson, M. Chini, X. Feng, C. Yun, H. Wang, S. Khan, S. Chen, and Z. Chang, “Extreme ultraviolet supercontinua supporting pulse durations of less than one atomic unit of time,” Opt. Lett.34, 3337–3339 (2009). [CrossRef] [PubMed]
  11. M. Gaarde and K. Schafer, “Generating single attosecond pulses via spatial filtering,” Opt. Lett.31, 3188–3190 (2006). [CrossRef] [PubMed]
  12. M. Gaarde, M. Murakami, and R. Kienberger, “Spatial separation of large dynamical blueshift and harmonic generation,” Phys. Rev. A74, 053401 (2006). [CrossRef]
  13. C. Jin, A-T Le, C. Trallero-Herrero, and C. Lin, “Generation of isolated attosecond pulses in the far field by spatial filtering with an intense few-cycle mid-infrared laser,” Phys. Rev. A84, 043411 (2011). [CrossRef]
  14. P. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett.71, 1994–1997 (1993). [CrossRef] [PubMed]
  15. C. Altucci, V. Tosa, and R. Velotta, “Beyond the single-atom response in isolated attosecond-pulse generation,” Phys. Rev. A75, 061401(R) (2007). [CrossRef]
  16. C. Altucci, R. Velotta, V. Tosa, P. Villoresi, F. Frassetto, L. Poletto, C. Vozzi, F. Calegari, M. Negro, S. De Silvestri, and S. Stagira, “Interplay between group-delay-dispersion-induced polarization gating and ionization to generate isolated attosecond pulses from multicycle lasers,” Opt. Lett.35, 2798–2880 (2010). [CrossRef] [PubMed]
  17. E. Takahashi, P. Lan, O. Mücke, Y. Nabekawa, and K. Midorikawa, “Infrared two-color multicycle laser field synthesis for generating an intense attosecond pulse,” Phys. Rev. Lett.104, 233901 (2010). [CrossRef] [PubMed]
  18. W. Cao, P. Lu, P. Lan, X. Wang, and G. Yang, “Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field,” Opt. Express15, 530–535 (2007). [CrossRef] [PubMed]
  19. W. Hong, P. Lu, Q. Li, and Q. Zhang, “Broadband water window supercontinuum generation with a tailored mid-IR pulse in neutral media,” Opt. Lett.34, 2102–2104 (2009). [CrossRef] [PubMed]
  20. H. Du, H. Wang, and B. Hu, “Isolated short attosecond pulse generated using a two-color laser and a high-order pulse,” Phys. Rev. A81, 063813 (2010). [CrossRef]
  21. H. Du and B. Hu, “Propagation effects of isolated attosecond pulse generation with a multicycle chirped and chirped-free two-color field,” Phys. Rev. A84,023817 (2011). [CrossRef]
  22. T. Pfeifer, L. Gallmann, M. Abel, D. Neumark, and S. Leone, “Single attosecond pulse generation in the multicycle-driver regime by adding a weak second-harmonic field,” Opt. Lett.31, 975–977 (2006). [CrossRef] [PubMed]
  23. F. Calegari, C. Vozzi, M. Negro, G. Sansone, F. Frassetto, L. Poletto, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Efficient continuum generation exceeding 200 eV by intense ultrashort two-color driver,” Opt. Lett.34, 3125–3127 (2009). [CrossRef] [PubMed]
  24. Z. Zeng, Y. Cheng, X. Song, R. Li, and Z. Xu, “Generation of an extreme ultraviolet supercontinuum in a two-color laser field,” Phys. Rev. Lett.98, 203901 (2007). [CrossRef] [PubMed]
  25. C. Vozzi, F. Calegari, F. Frassetto, L. Poletto, G. Sansone, P. Villoresi, M. Nisoli, S. De Silvestri, and S. Stagira, “Coherent continuum generation above 100 eV driven by an ir parametric source in a two-color scheme,” Phys. Rev. A79, 033842 (2009). [CrossRef]
  26. G. Orlando, P. Corso, E. Fiordilino, and F. Persico, “A three-colour scheme to generate isolated attosecond pulses,” J. Phys. B43, 025602 (2010). [CrossRef]
  27. M. Gaarde and K. Schafer, “Large enhancement of macroscopic yield in attosecond pulse train-assisted harmonic generation,” Phys. Rev. A72, 013411 (2005). [CrossRef]
  28. J. Biegert, A. Heinrich, C. Hauri, W. Kornelis, P. Schlup, M. Anscombe, K. Schafer, M. Gaarde, and U. Keller, “Enhancement of high-order harmonic emission using attosecond pulse trains,” Laser Phys.15, 899–902 (2005).
  29. J. Watson, A. Sanpera, X. Chen, and K. Burnett, “Harmonic generation from a coherent superposition of states,” Phys. Rev. A53, R1962–R1965 (1996). [CrossRef] [PubMed]
  30. D. Milos̆ević, “Theoretical analysis of high-order harmonic generation from a coherent superposition of states,” J. Opt. Soc. Am. B23, 308–317 (2006). [CrossRef]
  31. W. Hong, Q. Zhang, X. Zhu, and P. Lu, “Intense isolated attosecond pulse generation in pre-excited medium,” Opt. Express19, 4728–4739 (2011). [CrossRef] [PubMed]
  32. M. Feit, J. Fleck, and A. Steiger, “Solution of the schrödinger equation by a spectral method,” J. Comput. Phys.47, 412–433 (1982). [CrossRef]
  33. M. Vafaee, H. Sabzyan, Z. Vafaee, and A. Katanforoush, “Detailed instantaneous ionization rate of H2+ in an intense laser field,” Phys. Rev. A74, 043416 (2006). [CrossRef]
  34. E. Priori, G. Cerullo, M. Nisoli, S. Stagira, S. De Silvestri, P. Villoresi, L. Poletto, P. Ceccherini, C. Altucci, R. Bruzzese, and C. de Lisio, “Nonadiabatic three-dimentional model of high-order harmonic generation in the few-optical cycle regime,” Phys. Rev. A61, 063801 (2000). [CrossRef]
  35. E. Takahashi, T. Kanai, K. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent water window x ray by phase-matched high-order harmonic generation in neutral media,” Phys. Rev. Lett.101, 253901 (2008). [CrossRef] [PubMed]
  36. B. Henke, E. Gullikson, and J. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50 – 30,000eV, Z = 1 – 92,” At. Data Nucl. Data Tables54, 181–342 (1993). [CrossRef]
  37. P. Lan, P. Lu, Q. Li, F. Li, W. Hong, and Q. Zhang, “Macroscopic effects for quantum control of broadband isolated attosecond pulse generation with a two-color field,” Phys. Rev. A79, 043413 (2009). [CrossRef]
  38. M. Gaarde, J. Tate, and K. Schafer, “Macroscopic aspects of attosecond pulse generation,” J. Phys. B.41, 132001 (2008). [CrossRef]
  39. Z. Chang, “Single attosecond pulse and xuv supercontinuum in the high-order harmonic plateau,” Phys. Rev. A70, 043802 (2004). [CrossRef]
  40. Ph. Antoine, A. L’Huillier, and M. Lewenstein, “Attosecond pulse trains using high-order harmonics,” Phys. Rev. Lett.77, 1234–1237 (1996). [CrossRef] [PubMed]
  41. J. Carrera and S. Chu, “Extension of high-order harmonic generation cutoff via coherent control of intense few-cycle chirped laser pulses,” Phys. Rev. A75, 033807 (2007). [CrossRef]
  42. Y. Xiang, Y. Niu, and S. Gong, “Control of the high-order harmonics cutoff through the combination of a chirped laser and static electric field,” Phys. Rev. A79, 053419 (2009). [CrossRef]
  43. P. Antoine, B. Piraux, and A. Maquet, “Time profile of harmonics generated by a single atom in a strong electromagnetic field,” Phys. Rev. A51, R1750–R1753 (1995). [CrossRef] [PubMed]
  44. P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. Paulus, H. Walther, R. Kopold, W. Becker, D. Milosević, A. Sanpera, and M. Lewenstein, “Feynman’s path-integral approach for intense-laser-atom interactions,” Science292, 902–905 (2001). [CrossRef] [PubMed]
  45. Ph. Balcou and A. L’Huillier, “ Phase-matching effects in strong-field harmonic generation,” Phys. Rev. A47, 1447–1459 (1993). [CrossRef] [PubMed]
  46. C. Altucci, T. Starczewski, E. Mevel, C. Wahlström, B. Carré, and A. L’Huillier, “ Influence of atomic density in high-order harmonic generation,” J. Opt. Soc. Am. B13, 148–156 (1996). [CrossRef]
  47. A. L’Huillier, Ph. Balcou, S. Candel, K. Schafer, and K. Kulander, “Calculations of high-order harmonic-generation processes in xenon at 1064 nm,” Phys. Rev. A46, 2778–2790 (1992). [CrossRef]
  48. V. Tosa, K. T. Kim, and C. H. Nam, “Macroscopic generation of attosecond-pulse trains in strongly ionized media,” Phys. Rev. A79, 043828 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited