OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9763–9768

Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation

Yuechen Jia, Ningning Dong, Feng Chen, Javier R. Vázquez de Aldana, Sh. Akhmadaliev, and Shengqiang Zhou  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9763-9768 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2938 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication of ridge waveguide in Nd:GGG crystal by using swift C5+ ion irradiation and femtosecond laser ablation. At room temperature continuous wave laser oscillation at wavelength of ~1063 nm has been realized through the optical pump at 808 nm with a slope efficiency of 41.8% and the pump threshold is 71.6 mW.

© 2012 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 5, 2012
Published: April 13, 2012

Yuechen Jia, Ningning Dong, Feng Chen, Javier R. Vázquez de Aldana, Sh. Akhmadaliev, and Shengqiang Zhou, "Ridge waveguide lasers in Nd:GGG crystals produced by swift carbon ion irradiation and femtosecond laser ablation," Opt. Express 20, 9763-9768 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. V. Baburin, B. I. Galagan, Y. K. Danileiko, N. N. Il’ichev, A. V. Masalov, V. Y. Molchanov, and V. A. Chikov, “Two-frequency mode-locked lasing in a monoblock diode-pumped Nd3+:GGG laser,” IEEE Quantum Electron.31(4), 303–304 (2001). [CrossRef]
  2. L. J. Qin, D. Y. Tang, G. Q. Xie, C. M. Dong, Z. T. Jia, and X. T. Tao, “High-power continuous wave and passively Q-switched laser operations of a Nd:GGG crystal,” Laser Phys. Lett.5(2), 100–103 (2008). [CrossRef]
  3. E. J. Murphy, Integrated optical circuits and components: Design and applications (Marcel Dekker, New York, 1999).
  4. C. Grivas, “Optically pumped planar waveguide lasers, Part I: Fundamentals and fabrication techniques,” Prog. Quantum Electron.35(6), 159–239 (2011). [CrossRef]
  5. J. I. Mackenzie, “Dielectric solid-state planar waveguide lasers: A review,” IEEE J. Sel. Top. Quantum Electron.13(3), 626–637 (2007). [CrossRef]
  6. M. Pollnau, C. Grivas, L. Laversenne, J. S. Wilkinson, R. W. Eason, and D. P. Shepherd, “Ti:Sapphire waveguide lasers,” Laser Phys. Lett.4(8), 560–571 (2007). [CrossRef]
  7. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress,” Crit. Rev. Solid State Mater. Sci.33(3-4), 165–182 (2008). [CrossRef]
  8. F. Chen, X. L. Wang, and K. M. Wang, “Development of ion-implanted optical waveguides in optical materials: A review,” Opt. Mater.29(11), 1523–1542 (2007). [CrossRef]
  9. F. Chen, “Micro-and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications,” Laser Photon. Rev. DOI 10.1002/lpor.201100037. [CrossRef]
  10. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, “Ion-implanted Nd:GGG channel waveguide laser,” Opt. Lett.17(1), 52–54 (1992). [CrossRef] [PubMed]
  11. Y. Y. Ren, N. N. Dong, Y. Tan, J. Guan, F. Chen, and Q. M. Lu, “Continuous wave laser generation in proton implanted Nd:GGG planar waveguides,” J. Lightwave Technol.28, 3578–3581 (2010).
  12. C. Zhang, N. N. Dong, J. Yang, F. Chen, J. R. Vázquez de Aldana, and Q. M. Lu, “Channel waveguide lasers in Nd:GGG crystals fabricated by femtosecond laser inscription,” Opt. Express19(13), 12503–12508 (2011). [CrossRef] [PubMed]
  13. Y. C. Yao, N. N. Dong, F. Chen, S. K. Vanga, and A. A. Bettiol, “Proton beam writing of Nd:GGG crystals as new waveguide laser sources,” Opt. Lett.36(21), 4173–4175 (2011). [CrossRef] [PubMed]
  14. J. Manzano, J. Olivares, F. Agulló-López, M. L. Crespillo, A. Moroño, and E. Hodgson, “Optical waveguides obtained by swift-ion irradiation on silica (a-SiO2),” Nucl. Instrum. Methods Phys. Res. B268(19), 3147–3150 (2010). [CrossRef]
  15. J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, “Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences,” Opt. Lett.32(17), 2587–2589 (2007). [CrossRef] [PubMed]
  16. P. Kumar, S. M. Babu, S. Ganesamoorthy, A. K. Karnal, and D. Kanjilal, “Influence of swift ions and proton implantation on the formation of optical waveguides in lithium niobate,” J. Appl. Phys.102(8), 084905 (2007). [CrossRef]
  17. Y. Y. Ren, N. N. Dong, Y. C. Jia, L. L. Pang, Z. G. Wang, Q. M. Lu, and F. Chen, “Efficient laser emissions at 1.06 μm of swift heavy ion irradiated Nd:YCOB waveguides,” Opt. Lett.36(23), 4521–4523 (2011). [CrossRef] [PubMed]
  18. Y. Y. Ren, N. N. Dong, F. Chen, A. Benayas, D. Jaque, F. Qiu, and T. Narusawa, “Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation,” Opt. Lett.35(19), 3276–3278 (2010). [CrossRef] [PubMed]
  19. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. S. Aitchison, “Fabrication of optical waveguides in KGW by swift heavy ion beam irradiation,” Nucl. Instrum. Meth. B.249(1-2), 177–180 (2006). [CrossRef]
  20. F. Qiu and T. Narusawa, “Application of swift and heavy ion implantation to the formation of chalcogenide glass optical waveguides,” Opt. Mater.33(3), 527–530 (2011). [CrossRef]
  21. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys.106(8), 081101 (2009). [CrossRef]
  22. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, Cambridge, UK 1994).
  23. S. Juodkazis, V. Mizeikis, and H. Misawa, “Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications,” J. Appl. Phys.106(5), 051101 (2009). [CrossRef]
  24. R. Degl’lnnocenti, S. Reidt, A. Guarina, D. Rezzonico, G. Poberaj, and P. Gunter, “Micromachining of ridge optical waveguides on top of He-implanted β-BaB2O4 crystals by femtosecond laser ablation,” J. Appl. Phys.100(11), 113121 (2006). [CrossRef]
  25. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, and D. Jaque, “Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: micro-spectroscopy experiments and beam propagation calculations,” Appl. Phys. B95(1), 85–96 (2009). [CrossRef]
  26. A. Ródenas, D. Jaque, C. Molpeceres, S. Lauzurica, J. L. Ocaña, G. A. Torchia, and F. Agulló-Rueda, “Ultraviolet nanosecond laser-assisted micro-modifications in lithium niobate monitored by Nd3+ luminescence,” Appl. Phys., A Mater. Sci. Process.87(1), 87–90 (2007). [CrossRef]
  27. R. Ramponi, R. Osellame, and M. Marangoni, “Two straightforward methods for the measurement of optical losses in planar waveguides,” Rev. Sci. Instrum.73(3), 1117–1120 (2002). [CrossRef]
  28. J. F. Ziegler, computer code, SRIM http://www.srim.org .
  29. J. Siebenmorgen, K. Petermann, G. Huber, K. Rademaker, S. Nolte, and A. Tünnermann, “Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser,” Appl. Phys. B97(2), 251–255 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited