OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9784–9789

Thermal emission from a metamaterial wire medium slab

G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J.V. Foreman, and M.J. Bloemer  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9784-9789 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1144 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate thermal emission from a metamaterial wire medium embedded in a dielectric host and highlight two different regimes for efficient emission, respectively characterized by broadband emission near the effective plasma frequency of the metamaterial, and by narrow-band resonant emission at the band-edge in the Bragg scattering regime. We discuss how to control the spectral position and relative strength of these two emission mechanisms by varying the geometrical parameters of the proposed metamaterial and its temperature.

© 2012 OSA

OCIS Codes
(040.3060) Detectors : Infrared
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(160.3918) Materials : Metamaterials

ToC Category:

Original Manuscript: March 14, 2012
Revised Manuscript: April 3, 2012
Manuscript Accepted: April 3, 2012
Published: April 13, 2012

G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J.V. Foreman, and M.J. Bloemer, "Thermal emission from a metamaterial wire medium slab," Opt. Express 20, 9784-9789 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1981).
  2. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature416(6876), 61–64 (2002). [CrossRef] [PubMed]
  3. J. Le Gall, M. Olivier, and J.-J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B55(15), 10105–10114 (1997). [CrossRef]
  4. C.-M. Wang, Y.-C. Chang, M.-W. Tsai, Y.-H. Ye, C.-Y. Chen, Y.-W. Jiang, Y.-T. Chang, S. C. Lee, and D. P. Tsai, “Reflection and emission properties of an infrared emitter,” Opt. Express15(22), 14673–14678 (2007). [CrossRef] [PubMed]
  5. G. Biener, N. Dahan, A. Niv, V. Kleiner, and E. Hasman, “Highly coherent thermal emission obtained by plasmonic bandgap structures,” Appl. Phys. Lett.92(8), 081913 (2008). [CrossRef]
  6. M. Laroche, R. Carminati, and J.-J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett.96(12), 123903 (2006). [CrossRef] [PubMed]
  7. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  8. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  9. M. Francoeur, S. Basu, and S. J. Petersen, “Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles,” Opt. Express19(20), 18774–18788 (2011). [CrossRef] [PubMed]
  10. S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J.-J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express19(S5Suppl 5), A1088–A1103 (2011). [CrossRef] [PubMed]
  11. S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah, “Modulation of near-field heat transfer between two gratings,” Appl. Phys. Lett.98(24), 243102 (2011). [CrossRef]
  12. S.-A. Biehs, D. Reddig, and M. Holthaus, “Thermal radiation and near-field energy density of thin metallic films,” Eur. Phys. J. B55(3), 237–251 (2007). [CrossRef]
  13. P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B67(11), 113103 (2003). [CrossRef]
  14. J.-J. Greffet and M. Nieto-Vesperinas, “Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law,” J. Opt. Soc. Am. B15(10), 2735–2744 (1998). [CrossRef]
  15. G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. A. Vincenti, and A. Alù, “Transmission resonances in plasmonic metallic gratings,” J. Opt. Soc. Am. B28(2), 253–264 (2011). [CrossRef]
  16. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985). [CrossRef] [PubMed]
  17. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Photonic band edge effects in finite structures and applications to χ(2) interactions,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.64(1), 016609, 1661–1669 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited