OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9810–9818

Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser

Gerald M. Bonner, Helen M. Pask, Andrew J. Lee, Alan J. Kemp, Jiyang Wang, Huaijin Zhang, and Takashige Omatsu  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9810-9818 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2083 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The thermal lens induced in an a-cut BaWO4 crystal by stimulated Raman scattering is measured using lateral shearing interferometry. The strength of the lens is proportional to the Stokes output power. For light polarized parallel to the a-axis, and a Stokes mode radius of 120 μm, the lens is negative and highly astigmatic: −0.8 D W−1 in the plane parallel to the a-axis and −7.7 D W−1 in the plane parallel to the c-axis. The implications of this thermal lens for Raman laser design are discussed.

© 2012 OSA

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3550) Lasers and laser optics : Lasers, Raman
(140.6810) Lasers and laser optics : Thermal effects
(190.5650) Nonlinear optics : Raman effect
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 15, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 10, 2012
Published: April 16, 2012

Gerald M. Bonner, Helen M. Pask, Andrew J. Lee, Alan J. Kemp, Jiyang Wang, Huaijin Zhang, and Takashige Omatsu, "Measurement of thermal lensing in a CW BaWO4 intracavity Raman laser," Opt. Express 20, 9810-9818 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 692–704 (2007). [CrossRef]
  2. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-Watt continuous-wave Raman lasers,” IEEE J. Quantum Electron.48(3), 328–337 (2012). [CrossRef]
  3. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010). [CrossRef] [PubMed]
  4. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO4 at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  5. A. J. Lee, H. M. Pask, J. A. Piper, H. Zhang, and J. Wang, “An intracavity, frequency-doubled BaWO4 Raman laser generating multi-watt continuous-wave, yellow emission,” Opt. Express18(6), 5984–5992 (2010). [CrossRef] [PubMed]
  6. H. Zhu, Y. Duan, G. Zhang, C. Huang, Y. Wei, W. Chen, L. Huang, and Y. Huang, “Efficient continuous-wave YVO4/Nd:YVO4 Raman laser at 1176 nm,” Appl. Phys. B103(3), 559–562 (2011). [CrossRef]
  7. L. Fan, Y. X. Fan, Y. H. Duan, Q. Wang, H. T. Wang, G. H. Jia, and C. Y. Tu, “Continuous-wave intracavity Raman laser at 1179.5 nm with SrWO4 Raman crystal in diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B94(4), 553–557 (2009). [CrossRef]
  8. H. M. Pask, “The design and operation of solid-state Raman lasers,” Prog. Quantum Electron.27(1), 3–56 (2003). [CrossRef]
  9. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990). [CrossRef]
  10. P. Millar, R. B. Birch, A. J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers,” IEEE J. Quantum Electron.44(8), 709–717 (2008). [CrossRef]
  11. P. Millar, A. J. Kemp, and D. Burns, “Power scaling of Nd:YVO4 and Nd:GdVO4 disk lasers using synthetic diamond as a heat spreader,” Opt. Lett.34(6), 782–784 (2009). [CrossRef] [PubMed]
  12. D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook (Wiley, 1997).
  13. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994). [CrossRef]
  14. W. Lubeigt, G. M. Bonner, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Continuous-wave diamond Raman laser,” Opt. Lett.35(17), 2994–2996 (2010). [CrossRef] [PubMed]
  15. W. Lubeigt, V. G. Savitski, G. M. Bonner, S. L. Geoghegan, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “1.6 W continuous-wave Raman laser using low-loss synthetic diamond,” Opt. Express19(7), 6938–6944 (2011). [CrossRef] [PubMed]
  16. R. P. Mildren, J. E. Butler, and J. R. Rabeau, “CVD-diamond external cavity Raman laser at 573 nm,” Opt. Express16(23), 18950–18955 (2008). [CrossRef] [PubMed]
  17. R. P. Mildren and A. Sabella, “Highly efficient diamond Raman laser,” Opt. Lett.34(18), 2811–2813 (2009). [CrossRef] [PubMed]
  18. A. Sabella, J. A. Piper, and R. P. Mildren, “1240 nm diamond Raman laser operating near the quantum limit,” Opt. Lett.35(23), 3874–3876 (2010). [CrossRef] [PubMed]
  19. J.-P. M. Feve, K. E. Shortoff, M. J. Bohn, and J. K. Brasseur, “High average power diamond Raman laser,” Opt. Express19(2), 913–922 (2011). [CrossRef] [PubMed]
  20. A. Kananovich, A. Demidovich, M. Danailov, A. Grabtchikov, and V. Orlovich, “All-solid-state quasi-CW yellow laser with intracavity self-Raman conversion and sum frequency generation,” Laser Phys. Lett.7(8), 573–578 (2010). [CrossRef]
  21. W. J. Sun, Q. P. Wang, Z. J. Liu, X. Y. Zhang, G. T. Wang, F. Bai, W. X. Lan, X. B. Wan, and H. J. Zhang, “An efficient 1103 nm Nd:YAG/BaWO4 Raman laser,” Laser Phys. Lett.8(7), 512–515 (2011). [CrossRef]
  22. Z. Wang, C. Du, S. Ruan, and L. Zhang, “Thermal lens measurements in a Nd:GdVO4 self-Raman laser,” Opt. Laser Technol.42(6), 873–877 (2010). [CrossRef]
  23. T. Omatsu, M. Okida, A. Lee, and H. Pask, “Thermal lensing in a diode-end-pumped continuous-wave self-Raman Nd-doped GdVO4 laser,” Appl. Phys. B (2012), doi:. [CrossRef]
  24. W. W. Ge, H. J. Zhang, J. Y. Wang, J. H. Liu, H. X. Li, X. F. Cheng, H. Y. Xu, X. G. Xu, X. B. Hu, and M. H. Jiang, “The thermal and optical properties of BaWO4 single crystal,” J. Cryst. Growth276(1-2), 208–214 (2005). [CrossRef]
  25. D. Ran, H. Xia, S. Sun, Z. Ling, W. Ge, and H. Zhang, “Thermal conductivity of BaWO4 single crystal,” Mater. Sci. Eng. B130(1-3), 206–209 (2006). [CrossRef]
  26. L. Fan, Y. X. Fan, Y. Q. Li, H. J. Zhang, Q. Wang, J. Wang, and H. T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO4 Raman crystal,” Opt. Lett.34(11), 1687–1689 (2009). [CrossRef] [PubMed]
  27. J. L. Blows, T. Omatsu, J. Dawes, H. Pask, and M. Tateda, “Heat generation in Nd:YVO4 with and without laser action,” IEEE Photon. Technol. Lett.10(12), 1727–1729 (1998). [CrossRef]
  28. M. Okida, M. Itoh, T. Yatagai, H. Ogilvy, J. Piper, and T. Omatsu, “Heat generation in Nd doped vanadate crystals with 1.34 mum laser action,” Opt. Express13(13), 4909–4915 (2005). [CrossRef] [PubMed]
  29. M. Okida, A. Tonouchi, M. Itoh, T. Yatagai, and T. Omatsu, “Thermal-lens measurement in a side-pumped 1.3μm Nd:YVO4 bounce laser,” Opt. Commun.277(1), 125–129 (2007). [CrossRef]
  30. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am.72(1), 156–160 (1982). [CrossRef]
  31. W. Koechner, Solid-State Laser Engineering (Springer Verlag, 2006).
  32. Y.-F. Tsay, B. Bendow, and S. S. Mitra, “Theory of the temperature derivative of the refractive index in transparent crystals,” Phys. Rev. B8(6), 2688–2696 (1973). [CrossRef]
  33. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30(4), 89–153 (2006). [CrossRef]
  34. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express16(12), 8995–9010 (2008). [CrossRef] [PubMed]
  35. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” Proc. SPIE7838, 783819 (2010). [CrossRef]
  36. X. Peng, A. Asundi, Y. Chen, and Z. Xiong, “Study of the mechanical properties of Nd:YVO4 crystal by use of laser interferometry and finite-element analysis,” Appl. Opt.40(9), 1396–1403 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited