OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9819–9832

Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools

Wolfgang Wieser, Gesa Palte, Christoph M. Eigenwillig, Benjamin R. Biedermann, Tom Pfeiffer, and Robert Huber  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9819-9832 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1947 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present detailed investigations of chromatic polarization effects, caused by fiber spools used in FDML lasers and buffering spools for rapidly wavelength swept lasers. We introduce a novel wavelength swept FDML laser source, specially tailored for polarization sensitive optical coherence tomography (OCT) which switches between two different linear polarization states separated by 45°, i.e. 90° on the Poincaré sphere. The polarization maintaining laser cavity itself generates a stable linear polarization state and uses an external buffering technique in order to provide alternating polarization states for successive wavelength sweeps. The design of the setup is based on a comprehensive analysis of the polarization output from FDML lasers, using a novel 150 MHz polarization analyzer. We investigate the fiber polarization properties related to swept source OCT for different fiber delay topologies and analyze the polarization state of different FDML laser sources.

© 2012 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(140.3600) Lasers and laser optics : Lasers, tunable
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 22, 2012
Revised Manuscript: March 21, 2012
Manuscript Accepted: March 22, 2012
Published: April 16, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Wolfgang Wieser, Gesa Palte, Christoph M. Eigenwillig, Benjamin R. Biedermann, Tom Pfeiffer, and Robert Huber, "Chromatic polarization effects of swept waveforms in FDML lasers and fiber spools," Opt. Express 20, 9819-9832 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode fibers,” Opt. Lett.3(2), 60–62 (1978). [CrossRef] [PubMed]
  2. P. K. A. Wai and C. R. Menyak, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol.14(2), 148–157 (1996). [CrossRef]
  3. G. J. Foschini and C. D. Poole, “Statistical-theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol.9(11), 1439–1456 (1991). [CrossRef]
  4. J. P. Gordon and H. Kogelnik, “PMD fundamentals: Polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. U.S.A.97(9), 4541–4550 (2000). [CrossRef] [PubMed]
  5. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett.5(6), 273–275 (1980). [CrossRef] [PubMed]
  6. R. Ulrich and A. Simon, “Polarization optics of twisted single-mode fibers,” Appl. Opt.18(13), 2241–2251 (1979). [CrossRef] [PubMed]
  7. J. I. Sakai and T. Kimura, “Birefringence and polarization characteristics of single-mode optical fibers under elastic deformations,” IEEE J. Quantum Electron.17(6), 1041–1051 (1981). [CrossRef]
  8. A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron.19(5), 834–839 (1983). [CrossRef]
  9. J. Noda, K. Okamoto, and Y. Sasaki, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol.4(8), 1071–1089 (1986). [CrossRef]
  10. B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett.22(22), 1704–1706 (1997). [CrossRef] [PubMed]
  11. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett.22(5), 340–342 (1997). [CrossRef] [PubMed]
  12. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  13. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett.31(20), 2975–2977 (2006). [CrossRef] [PubMed]
  14. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett.32(6), 626–628 (2007). [CrossRef] [PubMed]
  15. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  16. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  17. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011). [CrossRef] [PubMed]
  18. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-Megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  19. W. Eickhoff, Y. Yen, and R. Ulrich, “Wavelength dependence of birefringence in single-mode fiber,” Appl. Opt.20(19), 3428–3435 (1981). [CrossRef] [PubMed]
  20. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  21. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32(14), 2049–2051 (2007). [CrossRef] [PubMed]
  22. G. Palte, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, and R. Huber, “Fourier Domain Mode Locked (FDML) Lasers for Polarization Sensitive OCT,” in Proceedings of SPIE-OSA Biomedical Optics (Optical Society of America, 2009), 7372_7370M.
  23. C. Jirauschek, C. Eigenwillig, B. Biedermann, and R. Huber, “Fourier domain mode locking theory,” in IEEE Conference on Lasers and Electro-Optics & Quantum Electronics and Laser Science Conference, Vols 1-9 (2008), pp. 1403–1404.
  24. C. Jirauschek, B. Biedermann, and R. Huber, “A theoretical description of Fourier domain mode locked lasers,” Opt. Express17(26), 24013–24019 (2009). [CrossRef] [PubMed]
  25. S. Todor, B. Biedermann, W. Wieser, R. Huber, and C. Jirauschek, “Instantaneous lineshape analysis of Fourier domain mode-locked lasers,” Opt. Express19(9), 8802–8807 (2011). [CrossRef] [PubMed]
  26. S. Todor, C. Jirauschek, B. Biedermann, and R. Huber, Linewidth Optimization of Fourier Domain Mode-Locked Lasers, 2010 Conference on Lasers and Electro-Optics (2010).
  27. J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett.36(24), 4788–4790 (2011). [CrossRef] [PubMed]
  28. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  29. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and randing,” J. Opt. Soc. Am. B9(6), 903–908 (1992). [CrossRef]
  30. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25(18), 1355–1357 (2000). [CrossRef] [PubMed]
  31. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  32. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001). [CrossRef] [PubMed]
  33. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef] [PubMed]
  34. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997). [CrossRef] [PubMed]
  35. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000). [CrossRef] [PubMed]
  36. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008). [CrossRef] [PubMed]
  37. J. Zhang, W. G. Jung, J. S. Nelson, and Z. P. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express12(24), 6033–6039 (2004). [CrossRef] [PubMed]
  38. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008). [CrossRef] [PubMed]
  39. S. L. Jiao, W. R. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt.42(25), 5191–5197 (2003). [CrossRef] [PubMed]
  40. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res.34(1), 59–69 (2000). [CrossRef] [PubMed]
  41. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express17(5), 3980–3996 (2009). [CrossRef] [PubMed]
  42. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  43. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express17(12), 9947–9961 (2009). [CrossRef] [PubMed]
  44. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics1(12), 709–716 (2007). [CrossRef]
  45. D. C. Adler, S. W. Huang, R. Huber, and J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express16(7), 4376–4393 (2008). [CrossRef] [PubMed]
  46. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett.33(13), 1395–1397 (2008). [CrossRef] [PubMed]
  47. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express16(21), 16552–16560 (2008). [PubMed]
  48. T. Klein, W. Wieser, B. R. Biedermann, C. M. Eigenwillig, G. Palte, and R. Huber, “Raman-pumped Fourier-domain mode-locked laser: analysis of operation and application for optical coherence tomography,” Opt. Lett.33(23), 2815–2817 (2008). [CrossRef] [PubMed]
  49. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express15(23), 15115–15128 (2007). [CrossRef] [PubMed]
  50. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst.31(1), 783–790 (2007). [CrossRef]
  51. V. J. Srinivasan, D. C. Adler, Y. L. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head,” Invest. Ophthalmol. Vis. Sci.49(11), 5103–5110 (2008). [CrossRef] [PubMed]
  52. M. Y. Jeon, J. Zhang, Q. Wang, and Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Express16(4), 2547–2554 (2008). [CrossRef] [PubMed]
  53. G. Y. Liu, A. Mariampillai, B. A. Standish, N. R. Munce, X. J. Gu, and I. A. Vitkin, “High power wavelength linearly swept mode locked fiber laser for OCT imaging,” Opt. Express16(18), 14095–14105 (2008). [CrossRef] [PubMed]
  54. Y. X. Mao, C. Flueraru, S. Sherif, and S. D. Chang, “High performance wavelength-swept laser with mode-locking technique for optical coherence tomography,” Opt. Commun.282(1), 88–92 (2009). [CrossRef]
  55. B. Schaefer, E. Collett, R. Smyth, D. Barrett, and B. Fraher, “Measuring the Stokes polarization parameters,” Am. J. Phys.75(2), 163 (2007). [CrossRef]
  56. W. H. McMaster, “Polarization and the Stokes Parameters,” Am. J. Phys.22(6), 351 (1954). [CrossRef]
  57. F. Mitschke, Glasfasern, 1st ed. (Spektrum, 2005).
  58. S. C. Rashleigh, W. K. Burns, R. P. Moeller, and R. Ulrich, “Polarization holding in birefringent single-mode fibers,” Opt. Lett.7(1), 40–42 (1982). [CrossRef] [PubMed]
  59. B. Hyle Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited