OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9841–9850

Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths

Jonas Jakutis-Neto, Jipeng Lin, Niklaus Ursus Wetter, and Helen Pask  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9841-9850 (2012)
http://dx.doi.org/10.1364/OE.20.009841


View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Nd:YLF/KGW Raman laser has been investigated in this work. We have demonstrated CW output powers at six different wavelengths, 1147 nm (0.70 W), 1163 nm (0.95 W), 549 nm (0.65 W), 552 nm (1.90 W), 573 nm (0.60 W) and 581 nm (1.10 W), with higher peak powers achieved under quasi-CW operation. Raman conversion of the 1053 nm fundamental emission is reported for the first time, enabling two new wavelengths in crystalline Raman lasers, 549 nm and 552 nm. The weak thermal lensing associated with Nd:YLF has enabled to achieve good beam quality, M2 ≤ 2.0, and stable operation in relatively long cavities.

© 2012 OSA

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3550) Lasers and laser optics : Lasers, Raman
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.7300) Lasers and laser optics : Visible lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 18, 2012
Revised Manuscript: April 3, 2012
Manuscript Accepted: April 4, 2012
Published: April 16, 2012

Citation
Jonas Jakutis-Neto, Jipeng Lin, Niklaus Ursus Wetter, and Helen Pask, "Continuous-wave Watt-level Nd:YLF/KGW Raman laser operating at near-IR, yellow and lime-green wavelengths," Opt. Express 20, 9841-9850 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9841


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, M. Schmitt, R. Maksimenka, and W. Kiefer, “Multimode pumped continuous-wave solid-state Raman laser,” Opt. Lett.29(21), 2524–2526 (2004). [CrossRef] [PubMed]
  2. A. A. Demidovich, A. S. Grabtchikov, V. A. Lisinetskii, V. N. Burakevich, V. A. Orlovich, and W. Kiefer, “Continuous-wave Raman generation in a diode-pumped Nd3+:KGd(WO4)2 laser,” Opt. Lett.30(13), 1701–1703 (2005). [CrossRef] [PubMed]
  3. H. M. Pask, “Continuous-wave, all-solid-state, intracavity Raman laser,” Opt. Lett.30(18), 2454–2456 (2005). [CrossRef] [PubMed]
  4. A. J. Lee, H. M. Pask, D. J. Spence, and J. A. Piper, “Efficient 5.3 W cw laser at 559 nm by intracavity frequency summation of fundamental and first-Stokes wavelengths in a self-Raman Nd:GdVO4 laser,” Opt. Lett.35(5), 682–684 (2010). [CrossRef] [PubMed]
  5. L. Fan, Y.-X. Fan, Y.-Q. Li, H. Zhang, Q. Wang, J. Wang, and H.-T. Wang, “High-efficiency continuous-wave Raman conversion with a BaWO(4) Raman crystal,” Opt. Lett.34(11), 1687–1689 (2009). [CrossRef] [PubMed]
  6. V. G. Savitski, I. Friel, J. E. Hastie, M. D. Dawson, D. Burns, and A. J. Kemp, “Characterization of single-crystal synthetic diamond for multi-watt continuous-wave Raman lasers,” IEEE J. Quantum Electron.48(3), 328–337 (2012). [CrossRef]
  7. Y. Lü, W. Cheng, Z. Xiong, J. Lu, L. Xu, G. Sun, and Z. Zhao, “Efficient CW laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett.7(11), 787–789 (2010). [CrossRef]
  8. A. J. Lee, D. J. Spence, J. A. Piper, and H. M. Pask, “A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible,” Opt. Express18(19), 20013–20018 (2010). [CrossRef] [PubMed]
  9. H. Y. Zhu, Y. M. Duan, G. Zhang, C. H. Huang, Y. Wei, H. Y. Shen, Y. Q. Zheng, L. X. Huang, and Z. Q. Chen, “Efficient second harmonic generation of double-end diffusion-bonded Nd:YVO4 self-Raman laser producing 7.9 W yellow light,” Opt. Express17(24), 21544–21550 (2009). [CrossRef] [PubMed]
  10. V. A. Lisinetskii, A. S. Grabtchikov, A. A. Demidovich, V. N. Burakevich, V. A. Orlovich, and A. N. Titov, “Nd:KGW/KGW crystal: efficient medium for continuous-wave intracavity Raman generation,” Appl. Phys. B: Lasers Opt.88(4), 499–501 (2007). [CrossRef]
  11. P. Dekker, H. M. Pask, D. J. Spence, and J. A. Piper, “Continuous-wave, intracavity doubled, self-Raman laser operation in Nd:GdVO(4) at 586.5 nm,” Opt. Express15(11), 7038–7046 (2007). [CrossRef] [PubMed]
  12. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-Watt CW yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4.,” Opt. Express16(26), 21958–21963 (2008). [CrossRef] [PubMed]
  13. Y. M. Duan, H. Y. Zhu, G. Zhang, C. H. Huang, Y. Wei, C. Y. Tu, Z. J. Zhu, F. G. Yang, and Z. Y. You, “Efficient 559.6 nm light produced by sum-frequency generation of diode-end-pumped Nd:YAG/SrWO4 Raman laser,” Laser Phys. Lett.7(7), 491–494 (2010). [CrossRef]
  14. M. Pollnau, P. J. Hardman, M. A. Kern, W. A. Clarkson, and D. C. Hanna, “Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG,” Phys. Rev. B58(24), 16076–16092 (1998). [CrossRef]
  15. Y. F. Lü, X. H. Zhang, A. F. Zhang, X. D. Yin, and J. Xia, “Efficient 1047 nm CW laser emission of Nd:YLF under direct pumping into the emitting level,” Opt. Commun.283(9), 1877–1879 (2010). [CrossRef]
  16. W. A. Clarkson, P. J. Hardman, and D. C. Hanna, “High-power diode-bar end-pumped Nd:YLF laser at 1.053 microm,” Opt. Lett.23(17), 1363–1365 (1998). [CrossRef] [PubMed]
  17. C. Bollig, C. Jacobs, M. J. D. Esser, E. H. Bernhardi, and H. M. von Bergmann, “Power and energy scaling of a diode-end-pumped Nd:YLF laser through gain optimization,” Opt. Express18(13), 13993–14003 (2010). [CrossRef] [PubMed]
  18. Y. K. Bu, C. Q. Tan, and N. Chen, “Continuous-wave yellow light source at 579 nm based on intracavity frequency-doubled Nd:YLF/SrWO4/LBO Raman laser,” Laser Phys. Lett.8(6), 439–442 (2011). [CrossRef]
  19. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lu, “M. A. Gad, T. Murai, and J. Lu, “Tetragonal vanadates YVO4 and GdVO4 - new efficient χ3-materials for Raman lasers,” Opt. Commun.194(1-3), 201–206 (2001). [CrossRef]
  20. P. J. Hardman, W. A. Clarkson, G. J. Friel, M. Pollnau, and D. C. Hanna, “Energy-transfer upconversion and thermal lensing in high-power end-pumped Nd: YLF laser crystals,” IEEE J. Quantum Electron.35(4), 647–655 (1999). [CrossRef]
  21. D. C. Hanna, C. G. Sawyers, and M. A. Yuratich, “Telescopic resonators for large-volume TEM00-mode operation,” Opt. Quantum Electron.13(6), 493–507 (1981). [CrossRef]
  22. I. V. Mochalov, “Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd),” Opt. Eng.36(6), 1660–1669 (1997). [CrossRef]
  23. M. E. Innocenzi, H. T. Yura, C. L. Fincher, and R. A. Fields, “Thermal modeling of continuous-wave end-pumped solid-state lasers,” Appl. Phys. Lett.56(19), 1831–1833 (1990). [CrossRef]
  24. A. A. Kaminskii, C. L. McCray, H. R. Lee, S. W. Lee, D. A. Temple, T. H. Chyba, W. D. Marsh, J. C. Barnes, A. N. Annanenkov, V. D. Legun, H. J. Eichler, G. M. A. Gad, and K. Ueda, “High efficiency nanosecond Raman lasers based on tetragonal PbWO4 crystals,” Opt. Commun.183(1-4), 277–287 (2000). [CrossRef]
  25. G. E. James, E. M. Harrell, C. Bracikowski, K. Wiesenfeld, and R. Roy, “Elimination of chaos in an intracavity-doubled Nd:YAG laser,” Opt. Lett.15(20), 1141–1143 (1990). [CrossRef] [PubMed]
  26. V. Magni, G. Cerullo, S. De Silvestri, O. Svelto, L. J. Qian, and M. Danailov, “Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,” Opt. Lett.18(24), 2111–2113 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited