OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9862–9875

1.5-μm band polarization entangled photon-pair source with variable Bell states

Shin Arahira, Tadashi Kishimoto, and Hitoshi Murai  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9862-9875 (2012)
http://dx.doi.org/10.1364/OE.20.009862


View Full Text Article

Enhanced HTML    Acrobat PDF (4943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we report a polarization-entangled photon-pair source in a 1.5-μm band which can generate arbitrary entangled states including four maximum entangled states (Bell states) by using cascaded optical second nonlinearities (second-harmonic generation and the following spontaneous parametric down conversion) in a periodically poled LiNbO3 (PPLN) ridge-waveguide device. Exchange among the Bell states was achieved by using an optical phase bias compensator (OPBC) in a Sagnac loop interferometer and a half-wave plate outside the loop for polarization conversion. Quantitative evaluation was made on the performance of the photon-pair source through the experiments of two-photon interferences, quantum state tomography, and test of violation of Bell inequality. We observed high visibilities of 96%, fidelities of 97%, and 2.71 of the S parameter in inequality of Clauser, Horne, Shimony, and Holt (CHSH). The experimental values, including peak coincidence counts in the two-photon interference (approximately 170 counts per second), remained almost unchanged in despite of the exchange among the Bell states. They were also in good agreement with the theoretical assumption from the mean number of the photon-pairs under the test (0.04 per pulse). More detailed experimental studies on the dependence of the mean number of the photon-pairs revealed that the quantum states were well understood as the Werner state.

© 2012 OSA

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: January 31, 2012
Revised Manuscript: March 2, 2012
Manuscript Accepted: March 19, 2012
Published: April 16, 2012

Citation
Shin Arahira, Tadashi Kishimoto, and Hitoshi Murai, "1.5-μm band polarization entangled photon-pair source with variable Bell states," Opt. Express 20, 9862-9875 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9862


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” IEEE Photon. Technol. Lett.14(7), 983–985 (2002). [CrossRef]
  2. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A70(3), 031802–031805 (2004). [CrossRef]
  3. H. Takesue and K. Inoue, “1.5-µm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13(20), 7832–7839 (2005). [CrossRef] [PubMed]
  4. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express16(13), 9966–9977 (2008). [CrossRef] [PubMed]
  5. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett.39(7), 621–622 (2003). [CrossRef]
  6. S. Tanzilli, W. Tittel, H. De Riedmatten, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, “PPLN waveguide for quantum communication,” Eur. Phys. J. D18(2), 155–160 (2002). [CrossRef]
  7. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Stable source of high quality telecom-band polarization-entangled photon-pairs based on a single, pulse-pumped, short PPLN waveguide,” Opt. Express16(17), 12460–12468 (2008). [CrossRef] [PubMed]
  8. Q. Zhang, X. Xie, H. Takesue, S. W. Nam, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Correlated photon-pair generation in reverse-proton-exchange PPLN waveguides with integrated mode demultiplexer at 10 GHz clock,” Opt. Express15(16), 10288–10293 (2007). [CrossRef] [PubMed]
  9. H. Takesue, K. Inoue, O. Tadanaga, Y. Nishida, and M. Asobe, “Generation of pulsed polarization-entangled photon pairs in a 1.55-µm band with a periodically poled lithium niobate waveguide and an orthogonal polarization delay circuit,” Opt. Lett.30(3), 293–295 (2005). [CrossRef] [PubMed]
  10. J. Chen, A. J. Pearlman, A. Ling, J. Fan, and A. L. Migdall, “A versatile waveguide source of photon pairs for chip-scale quantum information processing,” Opt. Express17(8), 6727–6740 (2009). [CrossRef] [PubMed]
  11. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12(10), 103005 (2010). [CrossRef]
  12. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett.31(12), 1905–1907 (2006). [CrossRef] [PubMed]
  13. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express19(17), 16032–16043 (2011). [CrossRef] [PubMed]
  14. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett.23(15), 880–884 (1969). [CrossRef]
  15. T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photon. Technol. Lett.23(3), 161–163 (2011). [CrossRef]
  16. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A64(5), 052312–052326 (2001). [CrossRef]
  17. H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, Y. Tokura, and S. Itabashi, “Generation of polarization entangled photon pairs using silicon wire waveguide,” Opt. Express16(8), 5721–5727 (2008). [CrossRef] [PubMed]
  18. K. Edamatsu, “Entangled photons: generation, observation, and characterization,” Jpn. J. Appl. Phys.46(11), 7175–7187 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited