OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9956–9961

Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy

C.-F. Cheng, Y. R. Sun, H. Pan, Y. Lu, X.-F. Li, J. Wang, A.-W. Liu, and S.-M. Hu  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9956-9961 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (967 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A continuous-wave cavity ring-down spectrometer has been built for precise determination of absolute frequencies of Doppler-broadened absorption lines. Using a thermo-stabilized Fabry-Pérot interferometer and Rb frequency references at the 780 nm and 795 nm, 0.1 – 0.6 MHz absolute frequency accuracy has been achieved in the 775–800 nm region. A water absorption line at 12579 cm−1 is studied to test the performance of the spectrometer. The line position at zero-pressure limit is determined with an uncertainty of 0.3 MHz (relative accuracy of 0.8 × 10−9).

© 2012 OSA

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Atomic and Molecular Physics

Original Manuscript: March 14, 2012
Revised Manuscript: April 7, 2012
Manuscript Accepted: April 11, 2012
Published: April 17, 2012

C.-F. Cheng, Y. R. Sun, H. Pan, Y. Lu, X.-F. Li, J. Wang, A.-W. Liu, and S.-M. Hu, "Cavity ring-down spectroscopy of Doppler-broadened absorption line with sub-MHz absolute frequency accuracy," Opt. Express 20, 9956-9961 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Rothman, I. Gordon, A. Barbe, D. Chris Benner, P. Bernath, M. Birk, V. Boudon, L. Brown, A. Campargue, J. Champion, K. Chance, L. Coudert, V. Dana, V. Devi, S. Fally, J.-M. Flaud, R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. Lafferty, J.-Y. Mandin, S. Massie, S. Mikhailenko, C. Miller, N. Moazzen-Ahmadi, O. Naumenko, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, A. Predoi-Cross, C. Rinsland, M. Rotger, M. Šimečková, M. Smith, K. Sung, S. Tashkun, J. Tennyson, R. Toth, A. Vandaele, and V. Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer110, 533–572 (2009). [CrossRef]
  2. S. S. Brown, “Absorption spectroscopy in high-finesse cavities for atmospheric studies,” Chem. Rev.103, 5219–5238 (2003). [CrossRef] [PubMed]
  3. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys.83, 975–999 (2005). [CrossRef]
  4. P. Zalicki and R. N. Zare, “Cavity ring-down spectroscopy for quantitative absorption measurements,” J. Chem. Phys.102, 2708–2717 (1995). [CrossRef]
  5. D. Romanini, A. A. Kachanov, and F. Stoeckel, “Diode laser cavity ring down spectroscopy,” Chem. Phys. Lett.270, 538–545 (1997). [CrossRef]
  6. B. Gao, W. Jiang, A.-W. Liu, Y. Lu, C.-F. Cheng, G.-S. Cheng, and S.-M. Hu, “Ultra sensitive near-infrared cavity ring down spectrometer for precise line profile measurement,” Rev. Sci. Instrum.81, 043105 (2010). [CrossRef] [PubMed]
  7. H. Huang and K. K. Lehmann, “Long-term stability in continuous wave cavity ringdown spectroscopy experiments,” Appl. Opt.49, 1378–1387 (2010). [CrossRef] [PubMed]
  8. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: Radiocarbondioxide optical detection,” Phys. Rev. Lett.107, 270802 (2011). [CrossRef]
  9. A. Foltynowicz, T. Ban, P. Masowski, F. Adler, and J. Ye, “Quantum-noise-limited optical frequency comb spectroscopy,” Phys. Rev. Lett.107, 233002 (2011). [CrossRef] [PubMed]
  10. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum.75, 849–863 (2004). [CrossRef]
  11. D. Lisak, J. T. Hodges, and R. Ciuryło, “Comparison of semiclassical line-shape models to rovibrational H2O spectra measured by frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A73, 012507 (2006). [CrossRef]
  12. S. Wójtewicz, D. Lisak, A. Cygan, J. Domysławska, R. S. Trawiński, and R. Ciuryło, “Line-shape study of self-broadened O2 transitions measured by Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy,” Phys. Rev. A84, 032511 (2011). [CrossRef]
  13. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett.104, 110801 (2010). [CrossRef] [PubMed]
  14. H. Pan, C.-F. Cheng, Y. R. Sun, B. Gao, A.-W. Liu, and S.-M. Hu, “Laser-locked, continuously tunable high resolution cavity ring-down spectrometer,” Rev. Sci. Instrum.82, 103110 (2011). [CrossRef] [PubMed]
  15. Y. R. Sun, H. Pan, C.-F. Cheng, A.-W. Liu, J.-T. Zhang, and S.-M. Hu, “Application of cavity ring-down spectroscopy to the boltzmann constant determination,” Opt. Express19, 19993–20002 (2011). [CrossRef] [PubMed]
  16. J. Domysławska, S. Wójtewicz, D. Lisak, A. Cygan, F. Ozimek, K. Stec, Cz. Radzewicz, R. S. Trawiński, and R. Ciuryło, “Cavity ring-down spectroscopy of the oxygen B-band with absolute frequency reference to the optical frequency comb,” J. Chem. Phys.136, 024201 (2012). [CrossRef]
  17. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett.21, 1280–1282 (1996). [CrossRef] [PubMed]
  18. M. Maric, J. J. McFerran, and A. N. Luiten, “Frequency-comb spectroscopy of the D1 line in laser-cooled rubidium,” Phys. Rev. A77, 032502 (2008). [CrossRef]
  19. C. F. Cheng, Y. R. Sun, H. Pan, J. Wang, A. W. Liu, A. Campargue, and S. M. Hu, “Electric-quadrupole transition of H2 determined to 10−9 precision,” Phys. Rev. A85, 024501 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited