OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9962–9977

Spectroscopic polarization-sensitive full-field optical coherence tomography

Arnaud Dubois  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 9962-9977 (2012)
http://dx.doi.org/10.1364/OE.20.009962


View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Full-field optical coherence tomography (FF-OCT) is a recent optical imaging technology based on low-coherence interference microscopy for imaging of semi-transparent samples with ~1 µm spatial resolution. FF-OCT produces en-face tomographic images obtained by arithmetic combination of interferometric images acquired by an array camera. In this paper, we demonstrate a unique multimodal FF-OCT system, capable of measuring simultaneously the intensity, the power spectrum and the phase-retardation of light backscattered by the sample being imaged. Compared to conventional FF-OCT, this multimodal system provides enhanced imaging contrasts at the price of a moderate increase in experimental complexity and cost.

© 2012 OSA

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(180.3170) Microscopy : Interference microscopy
(180.1655) Microscopy : Coherence tomography

ToC Category:
Microscopy

History
Original Manuscript: January 31, 2012
Revised Manuscript: March 30, 2012
Manuscript Accepted: April 1, 2012
Published: April 17, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Arnaud Dubois, "Spectroscopic polarization-sensitive full-field optical coherence tomography," Opt. Express 20, 9962-9977 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-9-9962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef]
  2. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996). [CrossRef]
  3. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In-vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993). [CrossRef]
  4. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In-vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002). [CrossRef]
  5. J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol.21(11), 1361–1367 (2003). [CrossRef]
  6. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, and D. Stifter, “En-face scanning optical coherence tomography with ultra-high resolution for material investigation,” Opt. Express13(3), 1015–1024 (2005). [CrossRef]
  7. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett.20(11), 1337–1339 (1995). [CrossRef]
  8. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997). [CrossRef]
  9. J. F. de Boer, T. E. Milner, M. J. C. Van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef]
  10. C. K. Hitzenberger, E. Götzinger, M. Sticker, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001). [CrossRef]
  11. K. Wiesauer, M. Pircher, E. Goetzinger, C. K. Hitzenberger, R. Engelke, G. Ahrens, G. Gruetzner, and D. Stifter, “Transversal ultrahigh-resolution polarization sensitive optical coherence tomography for strain mapping in materials,” Opt. Express14(13), 5945–5953 (2006). [CrossRef]
  12. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett.25(2), 111–113 (2000). [CrossRef]
  13. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000). [CrossRef]
  14. D. Adler, T. Ko, P. Herz, and J. G. Fujimoto, “Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation,” Opt. Express12(22), 5487–5501 (2004). [CrossRef]
  15. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, and Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett.27(19), 1702–1704 (2002). [CrossRef]
  16. B. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm,” Opt. Express13(11), 3931–3944 (2005). [CrossRef]
  17. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt.41(4), 805–812 (2002). [CrossRef]
  18. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett.27(7), 530–532 (2002). [CrossRef]
  19. B. Laude, A. De Martino, B. Drévillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt.41(31), 6637–6645 (2002). [CrossRef]
  20. M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett.28(10), 816–818 (2003). [CrossRef]
  21. A. Dubois, G. Moneron, K. Grieve, and A. C. Boccara, “Three-dimensional cellular-level imaging using full-field optical coherence tomography,” Phys. Med. Biol.49(7), 1227–1234 (2004). [CrossRef]
  22. W. Y. Oh, B. E. Bouma, N. Iftimia, R. Yelin, and G. J. Tearney, “Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging,” Opt. Express14(19), 8675–8684 (2006). [CrossRef]
  23. M. Sato, T. Nagata, T. Niizuma, L. Neagu, R. Dabu, and Y. Watanabe, “Quadrature fringes wide-field optical coherence tomography and its applications to biological tissues,” Opt. Commun.271(2), 573–580 (2007). [CrossRef]
  24. K. Grieve, A. Dubois, M. Simonutti, M. Paques, J. Sahel, J. F. Le Gargasson, and A. C. Boccara, “In-vivo anterior segment imaging in the rat eye with high speed white light full-field optical coherence tomography,” Opt. Express13(16), 6286–6295 (2005). [CrossRef]
  25. D. Sacchet, M. Brzezinski, J. Moreau, P. Georges, and A. Dubois, “Motion artifact suppression in full-field optical coherence tomography,” Appl. Opt.49(9), 1480–1488 (2010). [CrossRef]
  26. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt.43(14), 2874–2882 (2004). [CrossRef]
  27. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express14(2), 726–735 (2006). [CrossRef]
  28. A. Dubois, G. Moneron, and A. C. Boccara, “Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region,” Opt. Commun.266(2), 738–743 (2006). [CrossRef]
  29. D. Sacchet, J. Moreau, P. Georges, and A. Dubois, “Simultaneous dual-band ultra-high resolution full-field optical coherence tomography,” Opt. Express16(24), 19434–19446 (2008). [CrossRef]
  30. J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography I. Theory,” Appl. Opt.42(19), 3800–3810 (2003). [CrossRef]
  31. J. Moreau, V. Loriette, and A. C. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography II. Instrument and results,” Appl. Opt.42(19), 3811–3818 (2003). [CrossRef]
  32. G. Moneron, A. C. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Opt. Lett.32(14), 2058–2060 (2007). [CrossRef]
  33. A. Dubois, J. Moreau, and A. C. Boccara, “Spectroscopic ultrahigh-resolution full-field optical coherence microscopy,” Opt. Express16(21), 17082–17091 (2008). [CrossRef]
  34. S. Labiau, G. David, S. Gigan, and A. C. Boccara, “Defocus test and defocus correction in full-field optical coherence tomography,” Opt. Lett.34(10), 1576–1578 (2009). [CrossRef]
  35. M. Laubscher, S. Bourquin, L. Froehly, B. Karamata, and T. Lasser, “Spectroscopic optical coherence tomography based on wavelength de-multiplexing and smart pixel array detection,” Opt. Commun.237(4-6), 275–283 (2004). [CrossRef]
  36. I. Abdulhalim, R. Friedman, L. Liraz, and R. Dadon, “Full-field frequency domain common path optical coherence tomography with annular aperture,” Proc. of SPIE-OSA Biomedical Optics, SPIE 6627, 662719 (2007).
  37. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett.17(2), 151–153 (1992). [CrossRef]
  38. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef]
  39. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef]
  40. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In-vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef]
  41. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett.28(3), 182–184 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited