OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 20, Iss. 9 — Apr. 23, 2012
  • pp: 9991–9998

Intra-cavity gain shaping of mode-locked Ti:Sapphire laser oscillations

Shai Yefet, Na’aman Amer, and Avi Pe’er  »View Author Affiliations

Optics Express, Vol. 20, Issue 9, pp. 9991-9998 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The gain properties of an oscillator strongly affect its behavior. When the gain is homogeneous, different modes compete for gain resources in a ‘winner takes all’ manner, whereas with inhomogeneous gain, modes can coexist if they utilize different gain resources. We demonstrate precise control over the mode competition in a mode locked Ti:sapphire oscillator by manipulation and spectral shaping of the gain properties, thus steering the competition towards a desired, otherwise inaccessible, oscillation. Specifically, by adding a small amount of spectrally shaped inhomogeneous gain to the standard homogeneous gain oscillator, we selectively enhance a desired two-color oscillation, which is inherently unstable to mode competition and could not exist in a purely homogeneous gain oscillator. By tuning the parameters of the additional inhomogeneous gain we flexibly control the center wavelengths, relative intensities and widths of the two colors.

© 2012 OSA

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.7090) Lasers and laser optics : Ultrafast lasers
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 4, 2012
Revised Manuscript: April 4, 2012
Manuscript Accepted: April 8, 2012
Published: April 17, 2012

Shai Yefet, Na’aman Amer, and Avi Pe’er, "Intra-cavity gain shaping of mode-locked Ti:Sapphire laser oscillations," Opt. Express 20, 9991-9998 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. A. Yariv, Quantum Electronics (John Wiley & Sons, 1989).
  3. M. Mielke, G. A. Alphonse, and P. J. Delfyett, “60 channel wdm transmitter using multiwavelength modelocked semiconductor laser,” Electron. Lett.38, 368–370 (2002). [CrossRef]
  4. P. D. Wright, J. J. Coleman, N. Holonyak, M. J. Ludowise, and G. E. Stillman, “Homogeneous or inhomogeneous line broadening in a semiconductor laser,” Appl. Phys. Lett.29, 18–20 (1976). [CrossRef]
  5. L. W. Casperson and M. Khoshnevissan, “Threshold characteristics of multimode semiconductor lasers,” J. Appl. Phys.75, 737–747 (1994). [CrossRef]
  6. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear raman spectroscopy and microscopy,” Nature418, 512–514 (2002). [CrossRef] [PubMed]
  7. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated raman scattering,” Science330, 1368–1370 (2010). [CrossRef] [PubMed]
  8. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy,” Science322, 1857–1860 (2008). [CrossRef] [PubMed]
  9. A. Marian, M. C. Stowe, J. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science306, 2063–2067 (2004). [CrossRef] [PubMed]
  10. A. Pe’er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femtosecond frequency comb,” Phys. Rev. Lett.98, 113004 (2007). [CrossRef]
  11. M. R. X. Debarros and P. C. Becker, “2-color synchronously mode locked femtosecond ti-sapphire laser,” Opt. Lett.18, 631–633 (1993). [CrossRef]
  12. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, “Dual wavelength self mode locked ti-sapphire laser,” Opt. Lett.18, 1074–1076 (1993). [CrossRef] [PubMed]
  13. R. Szipocs, E. Finger, A. Euteneuer, M. Hofmann, and A. Kohazi-Kis, “Multicolor mode-locked ti sapphire laser with zero pulse jitter,” Laser Phys.10, 454457 (2000).
  14. L. Ma, R. K. Shelton, H. C. Kapteyn, M. M. Murnane, and J. Ye, “Sub-10-femtosecond active synchronization of two passively mode-locked ti:sapphire oscillators,” Phys. Rev. A64, 021802 (2001). [CrossRef]
  15. Z. Wei, Y. Kaboyashi, and K. Torizuka, “Passive synchronization between femtosecond ti:sapphire and cr:forsterite lasers,” Appl. Phys. B74, 171–176 (2002). [CrossRef]
  16. D. R. Dykaar, S. B. Darack, and W. H. Knox, “Cross locking dynamics in a 2-color mode locked ti-sapphire laser,” Opt. Lett.19, 1058–1060 (1994). [CrossRef] [PubMed]
  17. A. Leitenstorfer, C. Furst, and A. Laubereau, “Widely tunable two-color mode-locked ti sapphire laser with pulse jitter of less than 2 fs,” Opt. Lett.20, 916–918 (1995). [CrossRef] [PubMed]
  18. R. Hegenbarth, A. Steinmann, G. Toth, J. Hebling, and H. Giessen, “Two-color femtosecond optical parametric oscillator with 1.7 w output pumped by a 7.4 w yb:kgw laser,” J. Opt. Soc. Am. B28, 1344–1352 (2011). [CrossRef]
  19. N. I. Michailov, “Passively mode-locked dye laser with spatial dispersion in the gain medium,” J. Opt. Soc. Am. B9, 1369–1373 (1992). [CrossRef]
  20. S. Yanga, K. Leeb, Z. Xua, X. Zhanga, and X. Xua, “An accurate method to calculate the negative dispersion generated by prism pairs,” Opt. Laser Eng.36, 381–387 (2001). [CrossRef]
  21. M. T. Asaki, C. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, “Generation of 11-fs pulses from a self-modelocked ti:sapphire laser,” Opt. Lett.18, 977–979 (1993). [CrossRef] [PubMed]
  22. A. Gordon, B. Vodonos, V. Smulakovski, and B. Fischer, “Melting and freezing of light pulses and modes in mode-locked lasers,” Opt. Express11, 3418–3424 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

Supplementary Material

» Media 1: AVI (31897 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited