OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S1 — Jan. 2, 2012
  • pp: A13–A19

High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy

Arthur H. Reading, Jacob J. Richardson, Chih-Chien Pan, Shuji Nakamura, and Steven P. DenBaars  »View Author Affiliations


Optics Express, Vol. 20, Issue S1, pp. A13-A19 (2012)
http://dx.doi.org/10.1364/OE.20.000A13


View Full Text Article

Enhanced HTML    Acrobat PDF (1430 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Heteroepitaxial ZnO transparent current spreading layers with low sheet resistances were deposited on GaN-based light emitting diodes using aqueous solution phase epitaxy at temperatures below 90°C. The performance of the LEDs was analyzed and compared to identical devices using electron-beam evaporated indium tin oxide transparent current spreading layers. White LEDs with ZnO layers provided high luminous efficacy–157 lm/W at 0.5A/cm2, and 84.8 lm/W at 35A/cm2, 24% and 50% higher, respectively, than devices with ITO layers. The improvement appears to be due to the enhanced current spreading and low optical absorption provided by the ZnO.

© 2011 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Light-Emitting Diodes

History
Original Manuscript: August 16, 2011
Revised Manuscript: September 28, 2011
Manuscript Accepted: October 28, 2011
Published: November 14, 2011

Citation
Arthur H. Reading, Jacob J. Richardson, Chih-Chien Pan, Shuji Nakamura, and Steven P. DenBaars, "High efficiency white LEDs with single-crystal ZnO current spreading layers deposited by aqueous solution epitaxy," Opt. Express 20, A13-A19 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S1-A13


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, 2nd ed. (Springer, 2000)
  2. Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazaki, and T. Mukai, “Phosphor-conversion white light emitting diode using ingan near-ultraviolet chip,” Jpn. J. Appl. Phys.41(Part 2, No. 4A), L371–L373 (2002). [CrossRef]
  3. S. R. Jeon, Y. H. Song, H. J. Jang, G. M. Yang, S. W. Hwang, and S. J. Son, “Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions,” Appl. Phys. Lett.78(21), 3265 (2001). [CrossRef]
  4. J.-C. Chen, G.-J. Sheu, F.-S. Hwu, H.-I. Chen, J.-K. Sheu, T.-X. Lee, and C.-C. Sun, “Electrical-optical analysis of a GaN/sapphire LED chip by considering the resistivity of the current-spreading layer,” Opt. Rev.16(2), 213–215 (2009). [CrossRef]
  5. H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett.77(12), 1903–1904 (2000). [CrossRef]
  6. T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett.74(26), 3930 (1999). [CrossRef]
  7. D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN,” Thin Solid Films398–399, 87–92 (2001). [CrossRef]
  8. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Prog. Mater. Sci.50(3), 293–340 (2005). [CrossRef]
  9. P. L. Washington, H. C. Ong, J. Y. Dai, and R. P. H. Chang, “Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry,” Appl. Phys. Lett.72(25), 3261 (1998). [CrossRef]
  10. R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, “Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices,” Appl. Phys. Lett.73(3), 348 (1998). [CrossRef]
  11. D. B. Thompson, J. J. Richardson, S. P. DenBaars, and F. F. Lange, “Light emitting diodes with ZnO current spreading layers deposited from a low temperature aqueous solution,” Appl. Phys. Express2, 042101 (2009). [CrossRef]
  12. J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO: 1. thermodynamic analysis,” Cryst. Growth Des.9(6), 2570–2575 (2009). [CrossRef]
  13. J. J. Richardson and F. F. Lange, “Controlling low temperature aqueous synthesis of ZnO: 2. a novel continuous circulation reactor,” Cryst. Growth Des.9(6), 2576–2581 (2009). [CrossRef]
  14. J. H. Kim, E. M. Kim, D. Andeen, D. Thomson, S. P. DenBaars, and F. F. Lange, “Growth of Heteroepitaxial ZnO Thin Films on GaN-Buffered Al2O3 (0001) Substrates by Low-Temperature Hydrothermal Synthesis at 90°C,” Adv. Funct. Mater.17(3), 463–471 (2007). [CrossRef]
  15. K. J. Vampola, N. N. Fellows, H. Masui, S. E. Brinkley, M. Furukawa, R. B. Chung, H. Sato, J. Sonoda, H. Hirasawa, M. Iza, S. P. DenBaars, and S. Nakamura, “Highly efficient broad-area blue and white light-emitting diodes on bulk GaN substrates,” Phys. Status Solidi A206(2), 200–202 (2009). [CrossRef]
  16. Z. Fan, S. N. Mohammad, W. Kim, Ö. Aktas, A. Botchkarev, and H. Morkoç, “Very low resistance multilayer Ohmic contact to n-GaN,” Appl. Phys. Lett.68(12), 1672 (1996). [CrossRef]
  17. D. H. Zhang and D. E. Brodie, “Effects of annealing ZnO films prepared by ion-beam-assisted reactive deposition,” Thin Solid Films238(1), 95–100 (1994). [CrossRef]
  18. O. Caporaletti, “Electrical and optical properties of bias sputtered ZnO thin films,” Sol. Energy Mater.7(1), 65–73 (1982). [CrossRef]
  19. D. J. Andeen, J. H. Kim, F. F. Lange, G. K. L. Goh, and S. Tripathy, “Lateral Epitaxial Overgrowth of ZnO in Water at 90°C,” Adv. Funct. Mater.16(6), 799–804 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited