OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S1 — Jan. 2, 2012
  • pp: A94–A103

Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting

Hsin-Ping Wang, Kun-Tong Tsai, Kun-Yu Lai, Tzu-Chiao Wei, Yuh-Lin Wang, and Jr-Hau He  »View Author Affiliations


Optics Express, Vol. 20, Issue S1, pp. A94-A103 (2012)
http://dx.doi.org/10.1364/OE.20.000A94


View Full Text Article

Enhanced HTML    Acrobat PDF (2653 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Large-area, periodic Si nanopillar arrays (NPAs) with the periodicity of 100 nm and the diameter of 60 nm were fabricated by metal-assisted chemical etching with anodic aluminum oxide as a patterning mask. The 100-nm-periodicity NPAs serve an antireflection function especially at the wavelengths of 200~400 nm, where the reflectance is decreased to be almost tenth of the value of the polished Si (from 62.9% to 7.9%). These NPAs show very low reflectance for broadband wavelengths and omnidirectional light incidence, attributed to the small periodicity and the stepped refractive index of NPA layers. The experimental results are confirmed by theoretical calculations. Raman scattering intensity was also found to be significantly increased with Si NPAs. The introduction of this industrial-scale self-assembly methodology for light harvesting greatly advances the development of Si-based optical devices.

© 2011 OSA

OCIS Codes
(000.0000) General : General
(000.2700) General : General science

History
Original Manuscript: November 22, 2011
Revised Manuscript: December 11, 2011
Manuscript Accepted: December 12, 2011
Published: December 21, 2011

Citation
Hsin-Ping Wang, Kun-Tong Tsai, Kun-Yu Lai, Tzu-Chiao Wei, Yuh-Lin Wang, and Jr-Hau He, "Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting," Opt. Express 20, A94-A103 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S1-A94


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Choi and S. Im, “Ultraviolet enhanced Si-photodetector using p-NiO films,” Appl. Surf. Sci.244(1-4), 435–438 (2005). [CrossRef]
  2. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006). [CrossRef]
  3. S. Chhajed, M. F. Schubert, J. K. Kim, and E. F. Schubert, “Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics,” Appl. Phys. Lett.93(25), 251108–2511083 (2008). [CrossRef]
  4. J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. R. Mann, D. Ristau, W. Arens, R. Thielsch, and N. Kaiser, “Coated optics for DUV excimer laser application,” Proc. SPIE2000(3902), 514–527 (2000). [CrossRef]
  5. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  6. J. S. Li, H. Y. Yu, S. M. Wong, X. C. Li, G. Zhang, P. G. Q. Lo, and D. L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett.95(24), 243113–2431133 (2009). [CrossRef]
  7. L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem.21(1), 40–56 (2010). [CrossRef]
  8. J. Zhu, Z. F. Yu, G. F. Burkhard, C. M. Hsu, S. T. Connor, Y. Q. Xu, Q. Wang, M. McGehee, S. H. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  9. Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, “Slope-tunable Si nanorod arrays with enhanced antireflection and self-cleaning properties,” Nanoscale2(12), 2765–2768 (2010). [CrossRef] [PubMed]
  10. C. X. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  11. H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci.4(8), 2863–2869 (2011). [CrossRef]
  12. O. L. Muskens, J. G. Rivas, R. E. Algra, E. P. Bakkers, and A. Lagendijk, “Design of light scattering in nanowire materials for photovoltaic applications,” Nano Lett.8(9), 2638–2642 (2008). [CrossRef] [PubMed]
  13. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. Bakkers, W. L. Vos, and J. G. Rivas, “Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods,” Adv. Mater. (Deerfield Beach Fla.)21(9), 973–978 (2009). [CrossRef]
  14. Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings,” Energy Environ. Sci.4(9), 3436–3441 (2011). [CrossRef]
  15. P. B. Clapham and M. C. Hutley, “Hutley, Reduction of lens reflection by moth eye principle,” Nature244(5414), 281–282 (1973). [CrossRef]
  16. H. Sai, H. Fujii, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina masks,” Appl. Phys. Lett.88(20), 201116–201116-3 (2006). [CrossRef]
  17. W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays,” Nano Lett.10(5), 1582–1588 (2010). [CrossRef] [PubMed]
  18. H. Sai, Y. Kanamori, K. Arafune, Y. Ohshita, and M. Yamaguchi, “Light trapping effect of submicron surface textures in crystalline Si solar cells,” Prog. Photovolt. Res. Appl.15(5), 415–423 (2007). [CrossRef]
  19. Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, “Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,” J. Appl. Phys.106(11), 114310 (2009). [CrossRef] [PubMed]
  20. H. P. Wang, K. Y. Lai, Y. R. Lin, C. A. Lin, and J. H. He, “Periodic si nanopillar arrays fabricated by colloidal lithography and catalytic etching for broadband and omnidirectional elimination of Fresnel reflection,” Langmuir26(15), 12855–12858 (2010). [CrossRef] [PubMed]
  21. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  22. W. A. Nositschka, C. Beneking, O. Voigt, and H. Kurz, “Texturisation of multicrystalline silicon wafers for solar cells by reactive ion etching through colloidal masks,” Sol. Energy Mater. Sol. Cells76(2), 155–166 (2003). [CrossRef]
  23. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y. L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett.10(10), 3823–3827 (2010). [CrossRef] [PubMed]
  24. Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, and J. H. He, “Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,” J. Mater. Chem.20(48), 10924–10930 (2010). [CrossRef]
  25. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science268(5216), 1466–1468 (1995). [CrossRef] [PubMed]
  26. C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz, and S. T. Lee, “High-density, ordered ultraviolet light-emitting ZnO nanowire arrays,” Adv. Mater. (Deerfield Beach Fla.)15(10), 838–841 (2003). [CrossRef]
  27. A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys.84(11), 6023–6026 (1998). [CrossRef]
  28. Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching,” Nano Lett.8(9), 3046–3051 (2008). [CrossRef] [PubMed]
  29. X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett.77(16), 2572–2574 (2000). [CrossRef]
  30. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles,” Adv. Funct. Mater.16(3), 387–394 (2006). [CrossRef]
  31. K. Bhatt, S. Tan, S. Karumuri, and A. K. Kalkan, “Charge-selective Raman scattering and fluorescence quenching by “nanometal on semiconductor” substrates,” Nano Lett.10(10), 3880–3887 (2010). [CrossRef] [PubMed]
  32. S. J. Wilson and M. C. Hutley, “The optical-properties of moth eye antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982). [CrossRef]
  33. P. K. H. Ho, D. S. Thomas, R. H. Friend, and N. Tessler, “All-polymer optoelectronic devices,” Science285(5425), 233–236 (1999). [CrossRef] [PubMed]
  34. M. Erman, J. B. Theeten, P. Chambon, S. M. Kelso, and D. E. Aspnes, “Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation,” J. Appl. Phys.56(10), 2664–2671 (1984). [CrossRef]
  35. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology11(3), 161–164 (2000). [CrossRef]
  36. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008). [CrossRef] [PubMed]
  37. M. Born and E. Wolf, “Principles of optics,” (Cambridge University Press, 1999), sec. 8.6.1, Eq. (8).
  38. H. A. Haus, “Waves and fields in optoelectronics,” (Prentice-Hall, Englewood Cliffs, NJ, 1984)
  39. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  40. L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006). [CrossRef] [PubMed]
  41. W. S. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of large areas of highly oriented, very long silicon nanowires,” Adv. Mater. (Deerfield Beach Fla.)12(18), 1343–1345 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited