OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A157–A167

Electromagnetic simulations of a photonic luminescent solar concentrator

Johannes Gutmann, Marius Peters, Benedikt Bläsi, Martin Hermle, Andreas Gombert, Hans Zappe, and Jan Christoph Goldschmidt  »View Author Affiliations

Optics Express, Vol. 20, Issue S2, pp. A157-A167 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (7907 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Luminescent solar concentrators (LSC) are used in photovoltaic applications to concentrate direct and diffuse sunlight without tracking. We employed 2D FDTD simulations to investigate the concept of a photonic LSC (PLSC), where the luminescent material is embedded in a photonic crystal to mitigate the primary losses in LSCs: the escape cone and reabsorption. We obtain suppressed emission inside the photonic band gap, which can be utilized to reduce reabsorption. Furthermore, the efficiency of light guiding is strongly enhanced in a broad spectral range, reaching up to 99.7%. Our optimization of design parameters suggests emitting layers of sub-wavelength thickness.

© 2012 OSA

OCIS Codes
(220.1770) Optical design and fabrication : Concentrators
(260.2510) Physical optics : Fluorescence
(260.3800) Physical optics : Luminescence
(350.6050) Other areas of optics : Solar energy
(310.4165) Thin films : Multilayer design
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Solar Concentrators

Original Manuscript: October 6, 2011
Revised Manuscript: December 2, 2011
Manuscript Accepted: December 8, 2011
Published: January 6, 2012

Johannes Gutmann, Marius Peters, Benedikt Bläsi, Martin Hermle, Andreas Gombert, Hans Zappe, and Jan Christoph Goldschmidt, "Electromagnetic simulations of a photonic luminescent solar concentrator," Opt. Express 20, A157-A167 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Zastrow, “Physikalische Analyse der Energieverlustmechanismen im Fluoreszenzkollektor,” PdD thesis (Albert-Ludwigs-Universität Freiburg, Freiburg, 1981).
  2. R. Reisfeld and S. Neumann, “Planar solar energy converter and concentrator based on uranyl-doped glass,” Nature274(5667), 144–145 (1978). [CrossRef]
  3. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007). [CrossRef]
  4. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15(10), 2299–2300 (1976). [CrossRef] [PubMed]
  5. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. A–Mater.14, 123–139 (1977).
  6. L. H. Slooff, E. E. Bende, A. R. Burgers, T. Budel, M. Pravettoni, R. P. Kenny, E. D. Dunlop, and A. Büchtemann, “A luminescent solar concentrator with 7.1% power conversion efficiency,” Phys. Status. Solidi Rapid Res. Lett.2, 257–259 (2008).
  7. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limit of light concentrators,” Sol. Energy Mater.21(2–3), 99–111 (1990). [CrossRef]
  8. U. Rau, F. Einsele, and G. C. Glaeser, “Efficiency limits of photovoltaic fluorescent collectors,” Appl. Phys. Lett.87(17), 171101 (2005). [CrossRef]
  9. M. Peters, J. C. Goldschmidt, P. Löper, B. Bläsi, and A. Gombert, “The effect of photonic structures on the light guiding efficiency of fluorescent concentrators,” J. Appl. Phys.105(1), 014909 (2009). [CrossRef]
  10. B. S. Richards, A. Shalav, and R. Corkish, “A low escape-cone-loss luminescent solar concentrator,” in Proceedings of the 19th European Photovoltaic Solar Energy Conference, 2004, 113–116.
  11. D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011). [CrossRef]
  12. J. C. Goldschmidt, M. Peters, L. Prönneke, L. Steidl, R. Zentel, B. Bläsi, A. Gombert, S. Glunz, G. Willeke, and U. Rau, “Theoretical and experimental analysis of photonic structures for fluorescent concentrators with increased efficiencies,” Phys. Status. Solidi A205(12), 2811–2821 (2008). [CrossRef]
  13. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S. W. Glunz, and G. Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Sol. Energy Mater. Sol. Cells93(2), 176–182 (2009). [CrossRef]
  14. J. C. Goldschmidt, M. Peters, J. Gutmann, L. Steidl, R. Zentel, B. Bläsi, and M. Hermle, “Increasing fluorescent concentrator light collection efficiency by restricting the angular emission characteristics of the incorporated luminescent material - the “nano-fluko” concept,” Proc. SPIE7725, 77250S, 77250S-11 (2010). [CrossRef]
  15. V. P. Bykov, “Spontaneous emission in a periodic structure,” Sov. Phys. JETP35, 269 (1972).
  16. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  17. M. Carrascosa, S. Unamuno, and F. Agullo-Lopez, “Monte Carlo simulation of the performance of PMMA luminescent solar collectors,” Appl. Opt.22(20), 3236–3241 (1983). [CrossRef] [PubMed]
  18. S. J. Gallagher, P. C. Eames, and B. Norton, “Quantum dot solar concentrator behavior, predicted using a ray trace approach,” Int. J. Ambient Energ.25(1), 47–56 (2004). [CrossRef]
  19. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966). [CrossRef]
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, Norwood, MA, 2005).
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  23. H. A. Macleod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger, 1986).
  24. Lumogen® Red specification sheet, Kremer Pigmente GmbH & Co. KG, http://www.kremer-pigmente.com/shop_veyton/media/files_public/94720.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3055 KB)     

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited