OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A177–A189

Highly absorbing solar cells—a survey of plasmonic nanostructures

Ricky B. Dunbar, Thomas Pfadler, and Lukas Schmidt-Mende  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A177-A189 (2012)
http://dx.doi.org/10.1364/OE.20.00A177


View Full Text Article

Enhanced HTML    Acrobat PDF (2711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Plasmonic light trapping in thin film solar cells is investigated using full-wave electromagnetic simulations. Light absorption in the semiconductor layer with three standard plasmonic solar cell geometries is compared to absorption in a flat layer. We identify near-field absorption enhancement due to the excitation of localized surface plasmons but find that it is not necessary for strong light trapping in these configurations: significant enhancements are also found if the real metal is replaced by a perfect conductor, where scattering is the only available enhancement mechanism. The absorption in a 60 nm thick organic semiconductor film is found to be enhanced by up to 19% using dispersed silver nanoparticles, and up to 13% using a nanostructured electrode. External in-scattering nanoparticles strongly limit semiconductor absorption via back-reflection.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Photovoltaics

History
Original Manuscript: November 11, 2011
Revised Manuscript: December 23, 2011
Manuscript Accepted: December 29, 2011
Published: January 11, 2012

Citation
Ricky B. Dunbar, Thomas Pfadler, and Lukas Schmidt-Mende, "Highly absorbing solar cells—a survey of plasmonic nanostructures," Opt. Express 20, A177-A189 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Forrest, “The limits to organic photovoltaic cell efficiency,” MRS Bull.30(01), 28–32 (2005). [CrossRef]
  2. J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. (Deerfield Beach Fla.)23(16), 1810–1828 (2011). [CrossRef] [PubMed]
  3. M. Niggemann, M. Riede, A. Gombert, and K. Leo, “Light trapping in organic solar cells,” Phys. Status Solidi A205(12), 2862–2874 (2008). [CrossRef]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  5. K. Kim and D. L. Carroll, “Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C-60 bulk heterojunction photovoltaic devices,” Appl. Phys. Lett.87, 203113 (2005).
  6. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  7. D. H. Wang, Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, and A. J. Heeger, “Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles,” Angew. Chem. Int. Ed. Engl.50(24), 5519–5523 (2011). [CrossRef] [PubMed]
  8. J. F. Zhu, M. Xue, H. J. Shen, Z. Wu, S. Kim, J. J. Ho, A. Hassani-Afshar, B. Q. Zeng, and K. L. Wang, “Plasmonic effects for light concentration in organic photovoltaic thin films induced by hexagonal periodic metallic nanospheres,” Appl. Phys. Lett.98(15), 151110 (2011). [CrossRef]
  9. S. Pillai and M. A. Green, “Plasmonics for photovoltaic applications,” Sol. Energy Mater. Sol. Cells94(9), 1481–1486 (2010). [CrossRef]
  10. C. H. Kim, S. H. Cha, S. C. Kim, M. Song, J. Lee, W. S. Shin, S. J. Moon, J. H. Bahng, N. A. Kotov, and S. H. Jin, “Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications,” ACS Nano5(4), 3319–3325 (2011). [CrossRef] [PubMed]
  11. D. H. Wang, K. H. Park, J. H. Seo, J. Seifter, J. H. Jeon, J. K. Kim, J. H. Park, O. O. Park, and A. J. Heeger, “Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters,” Adv. Eng. Mater.1(5), 766–770 (2011). [CrossRef]
  12. G. Leveque and O. J. F. Martin, “Optimization of finite diffraction gratings for the excitation of surface plasmons,” J. Appl. Phys.100(12), 124301 (2006). [CrossRef]
  13. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B74(24), 245415 (2006). [CrossRef]
  14. R. M. Cole, J. J. Baumberg, F. J. Garcia de Abajo, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, “Understanding plasmons in nanoscale voids,” Nano Lett.7(7), 2094–2100 (2007). [CrossRef]
  15. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998). [CrossRef]
  16. R. Wannemacher, “Plasmon-supported transmission of light through nanometric holes in metallic thin films,” Opt. Commun.195(1-4), 107–118 (2001). [CrossRef]
  17. S. I. Na, S. S. Kim, J. Jo, S. H. Oh, J. Kim, and D. Y. Kim, “Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography,” Adv. Funct. Mater.18(24), 3956–3963 (2008). [CrossRef]
  18. C. Cocoyer, L. Rocha, L. Sicot, B. Geffroy, R. de Bettignies, C. Sentein, C. Fiorini-Debuisschert, and P. Raimond, “Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances,” Appl. Phys. Lett.88(13), 133108 (2006). [CrossRef]
  19. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  20. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19(12), 11256–11263 (2011). [CrossRef] [PubMed]
  21. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  22. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93(7), 073307 (2008). [CrossRef]
  23. J. H. Lee, J. H. Park, J. S. Kim, D. Y. Lee, and K. Cho, “High efficiency polymer solar cells with wet deposited plasmonic gold nanodots,” Org. Electron.10(3), 416–420 (2009). [CrossRef]
  24. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008). [CrossRef]
  25. C. J. Min, J. Li, G. Veronis, J. Y. Lee, S. H. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  26. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B75(23), 235426 (2007). [CrossRef]
  27. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011). [CrossRef] [PubMed]
  28. R. Dunbar, H. Hesse, D. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B (accepted).
  29. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  30. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93(12), 123308 (2008). [CrossRef]
  31. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007). [CrossRef] [PubMed]
  32. Comsol Multiphysics Users Manual. v.3.5.
  33. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  34. P. B. Johnson and R. W. Christy, “Optical-Constants of Noble-Metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  35. G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence,” J. Appl. Phys.102(12), 123109 (2007). [CrossRef]
  36. A. J. Moulé and K. Meerholz, “Minimizing optical losses in bulk heterojunction polymer solar cells,” Appl. Phys. B: Lasers Opt.86(4), 721–727 (2007). [CrossRef]
  37. W. Wang, S. M. Wu, K. Reinhardt, Y. L. Lu, and S. C. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  38. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96(12), 7519–7526 (2004). [CrossRef]
  39. K. Tvingstedt, N. Persson, O. Inganäs, A. Rahachou, and I. V. Zozoulenko, “Surface plasmon increase absorption in polymer photovoltaic cells,” Appl. Phys. Lett.91(11), 113514 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited