OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A197–A204

Absorption coefficient modeling of microcrystalline silicon thin film using Maxwell-Garnett effective medium theory

Sheng-Hui Chen, Hsuan-Wen Wang, and Ting-Wei Chang  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A197-A204 (2012)
http://dx.doi.org/10.1364/OE.20.00A197


View Full Text Article

Acrobat PDF (872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Considering the Mott-Davis density of state model and Rayleigh scattering effect, we present an approach to model the absorption profile of microcrystalline silicon thin films in this paper. Maxwell-Garnett effective medium theory was applied to analyze the absorption curves. To validate the model, several experimental profiles have been established and compared with those results from the model. With the assistance of the genetic algorithm, our results show that the absorption curves from the model are in good agreement with the experiments. Our findings also indicate that, as the crystal volume fraction increases, not only do the defects in amorphous silicon reduce, but the bulk scattering effect is gradually enhanced as well.

© 2012 OSA

OCIS Codes
(310.3840) Thin films : Materials and process characterization
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Materials

History
Original Manuscript: October 17, 2011
Revised Manuscript: January 4, 2012
Manuscript Accepted: January 6, 2012
Published: January 17, 2012

Citation
Sheng-Hui Chen, Hsuan-Wen Wang, and Ting-Wei Chang, "Absorption coefficient modeling of microcrystalline silicon thin film using Maxwell-Garnett effective medium theory," Opt. Express 20, A197-A204 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A197


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. R. H. Klazes, M. H. L. M. van den Broek, J. Bezemer, and S. Radelaar, “Determination of the optical bandgap of amorphous silicon,” Philos. Mag. B45(4), 377–383 (1982). [CrossRef]
  2. S. Aljishi, J. D. Cohen, S. Jin, and L. Ley, “Band tails in hydrogenated amorphous silicon and silicon-germanium alloys,” Phys. Rev. Lett.64(23), 2811–2814 (1990). [CrossRef] [PubMed]
  3. N. Wyrsch, F. Finger, T. McMahon, and M. Vaněček, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H,” J. Non-Cryst. Solids137–138, 347–350 (1991). [CrossRef]
  4. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, and H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells62(1-2), 97–108 (2000). [CrossRef]
  5. M. Vaněček, A. Poruba, Z. Remes, N. Beck, and M. Nesladek, “Optical properties of microcrystalline materials,” J. Non-Cryst. Solids227–230, 967–972 (1998). [CrossRef]
  6. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond.203(359-371), 385–420 (1904). [CrossRef]
  7. H. Q. Jiang, X. Yao, J. Che, and M. Q. Wang, “The photoluminescence and optical constant of ZnSe/SiO2 thin films prepared by sol-gel process,” Mater. Res. Bull.41(12), 2349–2356 (2006). [CrossRef]
  8. B. De Geyter and Z. Hens, “The absorption coefficient of PbSe/CdSe core/shell colloidal quantum dots,” Appl. Phys. Lett.97(16), 161908 (2010). [CrossRef]
  9. W. Y. Cho and K. S. Lim, “A simple optical properties modeling of microcrystalline silicon for the energy conversion application by the effective medium approximation method,” Jpn. J. Appl. Phys.36(Part 1, No. 3A), 1094–1098 (1997). [CrossRef]
  10. R. Krankenhagen, M. Schmidt, S. Grebner, M. Poschenrieder, W. Henrion, I. Sieber, S. Koynov, and R. Schwarz, “Correlation between structural, optical and electrical properties of μc-Si films,” J. Non-Cryst. Solids198–200, 923–926 (1996). [CrossRef]
  11. M. Vaněček, J. Kocka, J. Stuchlik, Z. Kozisek, O. Stika, and A. Triska, “Density of the gap states in undoped and doped glow discharge a-Si:H,” Sol. Energy Mater.8(4), 411–423 (1983). [CrossRef]
  12. H. Fritzsche, Amorphous Silicon and Related Materials (World Scientific, Singapore, 1989), Vol. A.
  13. R. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology (Kluwer Academic Publishers, Boston, 1998).
  14. S. Norrman, T. Andersson, C. Granqvist, and O. Hunderi, “Optical properties of discontinuous gold films,” Phys. Rev. B18(2), 674–695 (1978). [CrossRef]
  15. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998). [CrossRef]
  16. R. Hull, Properties of Crystalline Silicon (INSPEC, the Institution of Electrical Engineers, London, 1999).
  17. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vaněček, J. Kocka, J. Meier, P. Torres, and A. Shah, “Optical absorption and light scattering in microcrystalline silicon thin films and solar cells,” J. Appl. Phys.88(1), 148–159 (2000). [CrossRef]
  18. M. Vaněček, J. Kocka, A. Poruba, and A. Fejfar, “Direct measurement of the deep defect density in thin amorphous silicon films with the ‘absolute’ constant photocurrent method,” J. Appl. Phys.78(10), 6203–6210 (1995). [CrossRef]
  19. S. Furukawa and T. Miyasato, “Quantum size effects on the optical band gap of microcrystalline Si:H,” Phys. Rev. B Condens. Matter38(8), 5726–5729 (1988). [CrossRef] [PubMed]
  20. M. Vaněček, A. Poruba, Z. Remes, J. Rosa, S. Kamba, V. Vorlicek, J. Meier, and A. Shah, “Electron spin resonance optical characterization of defects in microcrystalline silicon,” J. Non-Cryst. Solids266–269, 519–523 (2000). [CrossRef]
  21. S. Klein, F. Finger, R. Carius, T. Dylla, and J. Klomfass, “Relationship between the optical absorption and the density of deep gap states in microcrystalline silicon,” J. Appl. Phys.102, 1035011 (2007).
  22. S. Sriraman, S. Agarwal, E. S. Aydil, and D. Maroudas, “Mechanism of hydrogen-induced crystallization of amorphous silicon,” Nature418(6893), 62–65 (2002). [CrossRef] [PubMed]
  23. K. H. Jun, R. Carius, and H. Stiebig, “Optical characteristics of intrinsic microcrystalline silicon,” Phys. Rev. B66(11), 115301 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited