OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A224–A244

Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns

Angelo Bozzola, Marco Liscidini, and Lucio Claudio Andreani  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A224-A244 (2012)
http://dx.doi.org/10.1364/OE.20.00A224


View Full Text Article

Acrobat PDF (2241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.

© 2011 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photovoltaics

History
Original Manuscript: October 18, 2011
Revised Manuscript: December 7, 2011
Manuscript Accepted: December 8, 2011
Published: January 30, 2012

Citation
Angelo Bozzola, Marco Liscidini, and Lucio Claudio Andreani, "Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns," Opt. Express 20, A224-A244 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A224


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, London2003).
  2. J. Poortmans and V. Arkhipov (editors), Thin Film Solar Cells (Wiley, Chichester, 2006).
  3. AM1.5 solar spectrum irradiance data: http://rredc.nrel.gov/solar/spectra/am1.5 .
  4. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando1985).
  5. D. T. Pierce and W. E Spicer, “Electronic structure of amorphous Si from photoemission and optical studies,” Phys. Rev. B5, 3017–3029 (1972). [CrossRef]
  6. M. I. Alonso, M. Garriga, C. A. Durante Rincán, E. Hernández, and M. León, “Optical functions of chalcopyrite CuGaxIn1−xSe2 alloys,” Appl. Phys. A74, 659–664 (2002). [CrossRef]
  7. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72, 899–907 (1982). [CrossRef]
  8. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev.29, 300–305 (1982). [CrossRef]
  9. M. A. Green, “Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions,” Progr. Photovolt: Res. Appl.10, 235–241 (2002). [CrossRef]
  10. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).
  11. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16, 21793–21800 (2008). [CrossRef] [PubMed]
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mat.9, 205–213 (2010). [CrossRef]
  13. J.N. Munday and H.A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11, 2195–2201 (2011). [CrossRef]
  14. J. Krc̆, M. Zeman, O. Kluth, F. Smole, and M. Topic̆, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells,” Thin Solid Films426, 296–304 (2003). [CrossRef]
  15. J. Krc̆, G. Cernivec, A. Campa, J. Malmström, M. Edoff, F. Smole, and M. Topic̆, “Optical and electrical modeling of Cu(In,Ga)Se2 solar cells,” Optical and Quantum Electronics38, 1115–1123 (2006). [CrossRef]
  16. M. Peters, C. Battaglia, A. G. Aberle, B. Bläsi, J. Luther, and S. Glunz, “3D optical simulation of scattering in thin film silicon solar cells,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition, (Hamburg, September 5–9, 2011) paper 3AV.3.4.
  17. M. Agrawal and M. Frei, “Rigorous optical modeling and optimization of thin-film photovoltaic cells with textured transparent conductive oxides,” Prog. Photovolt: Res. Appl. DOI: (2011). [CrossRef]
  18. T. Lanz, B. Ruhstaller, C. Battaglia, and C. Ballif, “Extended light scattering model incorporating coherence for thin-film silicon solar cells,” J. Appl. Phys.110, 033111 (2011). [CrossRef]
  19. D. S. Wiersma, “Disordered photonic structures for highly efficient thin film solar cells,” OSA Technical Digest (CD) (Optical Society of America, 2010), paper PWA1.
  20. M. Steltenpool, J. Rutten, G. van der Hofstad, H. de Groot, J. de Ruijter, A. J. M. van Erven, and G. Rajeswaran, “Periodic textured TCO for increased light-trapping in thin-film silicon solar cells,” in Proceedings of the 26th European Photovoltaic Solar Energy Conference and Exhibition (Hamburg, September 5–9, 2011), paper 3AV.1.55.
  21. J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys.110, 033104 (2011). [CrossRef]
  22. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34, 2476–2482 (1995). [CrossRef] [PubMed]
  23. S. Hava and M. Auslender, “Design and analysis of low-reflection grating microstructures for a solar energy absorber,” Solar Energy Mat. Solar Cells61, 143–151 (2000). [CrossRef]
  24. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15, 16986–17000 (2007). [CrossRef] [PubMed]
  25. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells a numerical study,” Phys. Stat. Sol. (a)205, 2777–2795 (2008). [CrossRef]
  26. Y. Lee, C. Huang, J. Chang, and M. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16, 7969–7975 (2008). [CrossRef] [PubMed]
  27. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103, 093102 (2008). [CrossRef]
  28. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express16, 15238–15248 (2008). [CrossRef] [PubMed]
  29. R. Dewan and D. Knipp, “Light trapping in thin-film silicon solar cells with integrated diffraction grating,” J. Appl. Phys.106, 074901 (2009). [CrossRef]
  30. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express17, 14312–14321 (2009). [CrossRef] [PubMed]
  31. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A367–A380 (2010). [CrossRef]
  32. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Nat. Ac. Sci.107, 17491–17496 (2010). [CrossRef]
  33. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18, 4260–4274 (2010). [CrossRef] [PubMed]
  34. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Expr.18, A133–A138 (2010). [CrossRef]
  35. M. Peters, M. Rüdiger, B. Bläsi, and W. Platzer, “Electro optical simulation of diffraction in solar cells,” Opt. Expr.18, A584–A593 (2010). [CrossRef]
  36. S. Zanotto, M. Liscidini, and L. C. Andreani, “Efficiency enhancement in thin-film silicon solar cells with a photonic lattice,” in Proceedings of the 25th European Photovoltaic Solar Energy Conference and Exhibition (Valencia, September 6–10, 2010), paper 1DV.2.66.
  37. K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys.102, 013102 (2007). [CrossRef]
  38. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101, 063105 (2007). [CrossRef]
  39. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010). [CrossRef]
  40. D. Madzharov, R. Dewan, and D. Knipp, “Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells,” Opt. Express19, A95–A107 (2009). [CrossRef]
  41. R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, “Optical enhancement and losses of pyramid textured thin-film silicon solar cells,” J. Appl. Phys110, 013101 (2011). [CrossRef]
  42. A. Mellor, I. Tobs, A. Mart, M. J. Mendes, and A. Luque, “Upper limits to absorption enhancement in thick solar cells using diffraction gratings,” Prog. Photovolt: Res. Appl.19, 676–687 (2011). [CrossRef]
  43. N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films451–452, 397–401 (2004). [CrossRef]
  44. H. Stiebig, N. Senoussaoui, C. Zahren, C. Haase, and J. Müller, “Silicon thin-film solar cells with rectangular-shaped grating couplers,” Prog. Photovolt: Res. Appl.14, 13–24 (2006). [CrossRef]
  45. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89, 111111 (2006). [CrossRef]
  46. L. Zeng, P. Bermel, Y. Yi, B. A. Alamariu, K. A. Broderick, J. Liu, C. Hong, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Appl. Phys. Lett.93, 221105 (2008). [CrossRef]
  47. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martnez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Appl. Phys. Lett.94, 191102 (2009). [CrossRef]
  48. J. Zhu, Z. Yu, G. F. Burkhard, C. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009). [CrossRef]
  49. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca i Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express18, A293–A299 (2010). [CrossRef] [PubMed]
  50. M. Tsai, H. Han, Y. Tsai, P. Tseng, P. Yu, H. Kuo, C. Shen, J. Shieh, and S. Lin, “Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells,” Opt. Express19, A757–A762 (2011). [CrossRef] [PubMed]
  51. Q. Hu, J. Wang, Y. Zhao, and D. Li, “A light-trapping structure based on Bi2O3 nano-islands with highly crystallized sputtered silicon for thin-film solar cells,” Opt. Express19, A20–A27 (2011). [CrossRef] [PubMed]
  52. A. Naqavi, K. Söderström, F. J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings,” Opt. Express19, 128–140 (2011). [CrossRef] [PubMed]
  53. X. Meng, G. Gomard, O. E. Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation,” Solar Energy Mat. Solar Cells95, S32–S38 (2011). [CrossRef]
  54. D. M. Whittaker and I. S. Culshaw, “Scattering-matrix treatment of patterned multilayer photonic structures,” Phys. Rev. B60, 2610–2618 (1999). [CrossRef]
  55. M. Liscidini, D. Gerace, L. C. Andreani, and J. E. Sipe, “Scattering-matrix analysis of periodically patterned multilayers with asymmetric unit cells and birefringent media,” Phys. Rev. B77, 035324 (2008). [CrossRef]
  56. M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglou, “The effect of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method,” J. Mater. Sci: Mater. Electron.19, 704–708 (2008). [CrossRef]
  57. Y. Yang, X. W. Sun, B. J. Chen, C. X. Xu, T. P. Chen, C. Q. Sun, B. K. Tay, and Z. Sun, “Refractive indices of textured indium tin oxide and zinc oxide thin films,” Thin Solid Films510, 95–101 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited