OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A265–A269

Angular selective semi-transparent photovoltaics

Brian Roberts, D. M. Nanditha, M. Dissanayake, and P.-C. Ku  »View Author Affiliations

Optics Express, Vol. 20, Issue S2, pp. A265-A269 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Conventional semi-transparent photovoltaics suffer from an inherent tradeoff between the amount of visible light transmitted versus absorbed, reducing energy conversion efficiency when higher transparency is desired. As a solution to lift this tradeoff, we propose a wavelength and angular selective reflector and demonstrate a potential implementation utilizing high aspect ratio metal nanoparticles. Using the anisotropy in the localized surface plasmon resonance wavelength, the proposed device can selectively harness sunlight incident at an elevated angle, increasing the power conversion efficiency by a factor of 1.44, while maintaining 70 percent optical transparency at normal incidence.

© 2012 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: December 19, 2011
Revised Manuscript: January 30, 2012
Manuscript Accepted: February 1, 2012
Published: February 9, 2012

Brian Roberts, D. M. Nanditha, M. Dissanayake, and P.-C. Ku, "Angular selective semi-transparent photovoltaics," Opt. Express 20, A265-A269 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Benemann, O. Chehab, and E. Schaar-Gabriel, “Building-integrated PV modules,” Sol. Energy Mater. Sol. Cells67(1-4), 345–354 (2001). [CrossRef]
  2. R. Lunt and V. Bulovic, “Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications,” Appl. Phys. Lett.98(11), 113305 (2011). [CrossRef]
  3. D. H. W. Li, T. N. T. Lam, W. W. H. Chan, and A. H. L. Mak, “Energy and cost analysis of semi-transparent photovoltaic in office buildings,” Appl. Energy86(5), 722–729 (2009). [CrossRef]
  4. R. F. Bailey-Salzman, B. P. Rand, and S. R. Forrest, “Semitransparent organic photovoltaic cells,” Appl. Phys. Lett.88(23), 233502 (2006). [CrossRef]
  5. D. M. N. M. Dissanayake, B. Roberts, and P. C. Ku, “Plasmonic backscattering enhanced inverted photovoltaics,” Appl. Phys. Lett.99(11), 113306 (2011). [CrossRef]
  6. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  7. J. Byun, J. I. Lee, S. Kwon, G. Jeon, and J. K. Kim, “Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods,” Adv. Mater. (Deerfield Beach Fla.)22(18), 2028–2032 (2010). [CrossRef] [PubMed]
  8. M. F. Cansizoglu, R. Engelken, H. W. Seo, and T. Karabacak, “High optical absorption of indium sulfide nanorod arrays formed by glancing angle deposition,” ACS Nano4(2), 733–740 (2010). [CrossRef] [PubMed]
  9. S. B. Chaney, S. Shanmukh, R. A. Dluhy, and Y.-P. Zhao, “Aligned silver nanorod arrays produce high sensitivity surface-enhanced Raman spectroscopy substrates,” Appl. Phys. Lett.87(3), 031908 (2005). [CrossRef]
  10. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  12. B. Roberts and P.-C. Ku, “Broadband characteristics of surface plasmon enhanced solar cells,” in 2010 35th IEEE Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, New York, 2010), pp. 002952–002954.
  13. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  14. E. Lioudakis, A. Othonos, I. Alexandrou, and Y. Hayashi, “Optical properties of conjugated poly(3-hexylthiophene)/[6,6]-phenylC61-butyric acid methyl ester composites,” J. Appl. Phys.102(8), 083104 (2007). [CrossRef]
  15. B. Smits, “An RGB to spectrum conversion for reflectances,” J. Graphics Tools4(4), 11–22 (1999).
  16. U.S. Department of Energy Benchmark, “U.S. Department of Energy Commercial Reference Building Models of the National Building Stock” (National Renewable Energy Laboratory, 2011). http://www.nrel.gov/docs/fy11osti/46861.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited