OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A278–A286

Reflective type Solar-LCDs by using polarizing polymer solar cells

Yoon Ho Huh, Jung Chul Shin, Young Chan Kim, and Byoungchoo Park  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A278-A286 (2012)
http://dx.doi.org/10.1364/OE.20.00A278


View Full Text Article

Enhanced HTML    Acrobat PDF (1496 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present herein the results of a study of the reflective polarizing photovoltaic (PV) effects in an aligned polymer bulk-heterojunction PV layer. The PV layer consisted of a composite of regioregular poly(3-hexylthiophene) and methanofullerene (P3HT:PCBM) and the fairly uniform in-plane alignment of the P3HT:PCBM PV layer was achieved by means of a simple rubbing technique. The macroscopic axial orientation of the P3HT polymer in the aligned PV layer was observed to be significantly increased in the direction of rubbing with an axial orientational order parameter of 0.40. Moreover, it was also found that the reflective polarizing polymer solar cells (PSCs) that contained the aligned P3HT:PCBM layers exhibited a greater degree of anisotropy of 1.60 for the PV efficiencies under polarized illumination along the two principal axes. These reflective polarizing PSCs were applied to new reflective type solar cell-liquid crystal displays (Solar-LCDs), which exhibited a contrast ratio of 1.7. These results form a promising foundation for various energy-harvesting polarization-dependent opto-electrical Solar-LCD device applications.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5470) Materials : Polymers
(310.1860) Thin films : Deposition and fabrication
(350.6050) Other areas of optics : Solar energy
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: December 23, 2011
Revised Manuscript: February 3, 2012
Manuscript Accepted: February 8, 2012
Published: February 15, 2012

Citation
Yoon Ho Huh, Jung Chul Shin, Young Chan Kim, and Byoungchoo Park, "Reflective type Solar-LCDs by using polarizing polymer solar cells," Opt. Express 20, A278-A286 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A278


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science258(5087), 1474–1476 (1992). [CrossRef] [PubMed]
  2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, “Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions,” Science270(5243), 1789–1791 (1995). [CrossRef]
  3. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater.11(1), 15–26 (2001). [CrossRef]
  4. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, “Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene),” J. Appl. Phys.98(4), 043704 (2005). [CrossRef]
  5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005). [CrossRef]
  6. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. (Deerfield Beach Fla.)22(20), E135–E138 (2010). [CrossRef] [PubMed]
  7. H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, “Polymer solar cells with enhanced open-circuit voltage and efficiency,” Nat. Photonics3(11), 649–653 (2009). [CrossRef]
  8. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, “A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies,” J. Mater. Chem.19(30), 5442–5451 (2009). [CrossRef]
  9. X. L. Chen, A. J. Lovinger, Z. Bao, and J. Sapjeta, “Morphological and transistor studies of organic molecular semiconductors with anisotropic electrical characteristics,” Chem. Mater.13(4), 1341–1348 (2001). [CrossRef]
  10. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science290(5499), 2123–2126 (2000). [CrossRef] [PubMed]
  11. P. Dyreklev, G. Gustafsson, O. Inganäs, and H. Stubb, “Polymeric field effect transistors using oriented polymers,” Synth. Met.57(1), 4093–4098 (1993). [CrossRef]
  12. B. Park, Y. H. Huh, and J. C. Shin, “In-plane anisotropy of photovoltaic effects in aligned polymer solar cells,” Sol. Energy Mater. Sol. Cells95(12), 3543–3549 (2011). [CrossRef]
  13. E. H. Land, “Some aspects of the development of sheet polarizers,” J. Opt. Soc. Am.41(12), 957–962 (1951). [CrossRef]
  14. A. S. Makas, “Film polarizer for visible and ultraviolet radiation,” J. Opt. Soc. Am.52(1), 43–44 (1962). [CrossRef]
  15. J. F. Schetzina, “Photovoltaic properties of anisotropic relaxation semiconductors,” Phys. Rev. B12(8), 3339–3352 (1975). [CrossRef]
  16. R. J. Tseng, R. Chan, V. C. Tung, and Y. Yang, “Anisotropy in organic single-crystal photovoltaic characteristics,” Adv. Mater. (Deerfield Beach Fla.)20(3), 435–438 (2008). [CrossRef]
  17. R. Zhu, A. Kumar, and Y. Yang, “Polarizing organic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)23(36), 4193–4198 (2011). [CrossRef] [PubMed]
  18. Y. I. Lee, M. Kim, Y. H. Huh, J. S. Lim, S. C. Yoon, and B. Park, “Improved photovoltaic effect of polymer solar cells with nanoscale interfacial layers,” Sol. Energy Mater. Sol. Cells94(6), 1152–1156 (2010). [CrossRef]
  19. J. Chen and H.-S. Kwok, “A new reflective twisted nematic liquid crystal display mode with large cell gap for direct view applications,” SID 01 Digest,32, 874–877 (2001).
  20. R. D. McCullough, S. Tristram-Nagle, S. P. Williams, R. D. Lowe, and M. Jayaraman, “Self-orienting head-to-tail poly(3-alkylthiophenes): new insights on structure-property relationships in conducting polymers,” J. Am. Chem. Soc.115(11), 4910–4911 (1993). [CrossRef]
  21. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature401(6754), 685–688 (1999). [CrossRef]
  22. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, “Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes,” Adv. Funct. Mater.17(10), 1636–1644 (2007). [CrossRef]
  23. C.-W. Chu, H. Yang, W.-J. Hou, J. Huang, G. Li, and Y. Yang, “Control of the nanoscale crystallinity and phase separation in polymer solar cells,” Appl. Phys. Lett.92(10), 103306 (2008). [CrossRef]
  24. M. Rikukawa, M. Nakagawa, K. Ishida, H. Abe, K. Sanui, and N. Ogata, “Electrical properties of conductive Langmuir-Blodgett films comprised of head-to-tail poly (3-hexylthiophene),” Thin Solid Films284, 636–639 (1996). [CrossRef]
  25. G. Xu, Z. Bao, and J. T. Groves, “Langmuir−Blodgett films of regioregular Poly(3-hexylthiophene) as field-effect transistors,” Langmuir16(4), 1834–1841 (2000). [CrossRef]
  26. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon Press, 1993).
  27. V. Pryamitsyn and V. Ganesan, “Self-assembly of rod-coil block copolymers,” J. Chem. Phys.120(12), 5824–5838 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited