OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A293–A308

Energy consumption in optical modulators for interconnects

David A. B. Miller  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A293-A308 (2012)
http://dx.doi.org/10.1364/OE.20.00A293


View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze energy consumption in optical modulators operated in depletion and intended for low-power interconnect applications. We include dynamic dissipation from charging modulator capacitance and net energy consumption from absorption and photocurrent, both in reverse and small forward bias. We show that dynamic dissipation can be independent of static bias, though only with specific kinds of bias circuits. We derive simple expressions for the effects of photocurrent on energy consumption, valid in both reverse and small forward bias. Though electroabsorption modulators with large reverse bias have substantial energy penalties from photocurrent dissipation, we argue that modulator diodes with thin depletion regions and operating in small reverse and/or forward bias could have little or no such photocurrent energy penalty, even conceivably being more energy-efficient than an ideal loss-less modulator.

© 2012 OSA

OCIS Codes
(200.4650) Optics in computing : Optical interconnects
(250.4110) Optoelectronics : Modulators

ToC Category:
Energy in Telecommunications

History
Original Manuscript: January 17, 2012
Revised Manuscript: February 24, 2012
Manuscript Accepted: February 27, 2012
Published: March 1, 2012

Citation
David A. B. Miller, "Energy consumption in optical modulators for interconnects," Opt. Express 20, A293-A308 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A293


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett.14(2), 146–148 (1989). [CrossRef] [PubMed]
  2. D. A. B. Miller, “Physical reasons for optical interconnection,” Int. J. Optoelectron.11, 155–168 (1997).
  3. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE97(7), 1166–1185 (2009). [CrossRef]
  4. A. V. Krishnamoorthy and D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: A Technology Roadmap,” IEEE J. Sel. Top. Quantum Electron.2(1), 55–76 (1996). [CrossRef]
  5. K.-H. Koo, P. Kapur, and K. C. Saraswat, “Compact performance models and comparisons for gigascale on-chip global interconnect technologies,” IEEE Trans. Electron. Dev.56(9), 1787–1798 (2009). [CrossRef]
  6. G. T. Reed, G. Mashonovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics4(8), 518–526 (2010). [CrossRef]
  7. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express16(6), 4309–4315 (2008). [CrossRef] [PubMed]
  8. F. Y. Gardes, A. Brimont, P. Sanchis, G. Rasigade, D. Marris-Morini, L. O’Faolain, F. Dong, J. M. Fédéli, P. Dumon, L. Vivien, T. F. Krauss, G. T. Reed, and J. Martí, “High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode,” Opt. Express17(24), 21986–21991 (2009). [CrossRef] [PubMed]
  9. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C.-C. Kung, W. Qian, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express17(25), 22484–22490 (2009). [CrossRef] [PubMed]
  10. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett.35(19), 3246–3248 (2010). [CrossRef] [PubMed]
  11. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express19(21), 20435–20443 (2011). [CrossRef] [PubMed]
  12. M. Ziebell, D. Marris-Morini, G. Rasigade, P. Crozat, J.-M. Fédéli, P. Grosse, E. Cassan, and L. Vivien, “Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions,” Opt. Express19(15), 14690–14695 (2011). [CrossRef] [PubMed]
  13. M. R. Watts, W. A. Zortman, D. C. Trotter, R. W. Young, and A. L. Lentine, “Vertical junction silicon microdisk modulators and switches,” Opt. Express19(22), 21989–22003 (2011). [CrossRef] [PubMed]
  14. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics2(7), 433–437 (2008). [CrossRef]
  15. N.-N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide,” Opt. Express19(8), 7062–7067 (2011). [CrossRef] [PubMed]
  16. N.-N. Feng, S. Liao, D. Feng, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, Y. Liu, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Design and fabrication of 3μm silicon-on-insulator waveguide integrated Ge electro-absorption modulator,” Opt. Express19(9), 8715–8720 (2011). [CrossRef] [PubMed]
  17. A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Novel evanescent-coupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector,” Opt. Express19(6), 5040–5046 (2011). [CrossRef] [PubMed]
  18. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express15(9), 5851–5859 (2007). [CrossRef] [PubMed]
  19. J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett.44(1), 49–50 (2008). [CrossRef]
  20. E. H. Edwards, R. M. Audet, S. A. Claussen, R. K. Schaevitz, E. Tasyurek, S. Ren, O. I. Dosunmu, M. S. Ünlü, and D. A. B. Miller, “Si-Ge surface-normal asymmetric Fabry-Perot electro-absorption modulator,” CLEO (May 16–21, 2010), San Jose, CA, Paper CTuA5.
  21. R. M. Audet, E. H. Edwards, P. Wahl, and D. A. B. Miller, “Investigation of limits to the optical performance of asymmetric Fabry-Perot electroabsorption modulators,” IEEE J. Quantum Electron.48(2), 198–209 (2012). [CrossRef]
  22. R. K. Schaevitz, D. S. Ly-Gagnon, J. E. Roth, E. H. Edwards, and D. A. B. Miller, “Indirect absorption in germanium quantum wells,” AIP Advances1(3), 032164 (2011). [CrossRef]
  23. R. K. Schaevitz, E. H. Edwards, J. E. Roth, E. T. Fei, Y. Rong, P. Wahl, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators using germanium quantum wells,” IEEE J. Quantum Electron.48(2), 187–197 (2012). [CrossRef]
  24. E. H. Edwards, R. M. Audet, E. Fei, G. Shambat, R. K. Schaevitz, Y. Rong, S. A. Claussen, T. I. Kamins, J. Vuckovic, J. S. Harris, and D. A. B. Miller, “Ge quantum well resonator modulators,” 8th Int. Conf. Group IV Photonics, London, Sept. 2011, Paper P1.9.
  25. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” IEEE Photon. Technol. Lett.24(6), 461–463 (2012). [CrossRef]
  26. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express19(5), 3952–3961 (2011). [CrossRef] [PubMed]
  27. K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev.130(6), 2204–2206 (1963). [CrossRef]
  28. J. D. Dow and D. Redfield, “Electroabsorption in semiconductors: the excitonic absorption edge,” Phys. Rev. B1(8), 3358–3371 (1970). [CrossRef]
  29. D. A. B. Miller, D. S. Chemla, and S. Schmitt-Rink, “Relation between electroabsorption in bulk semiconductors and in quantum wells: The quantum-confined Franz-Keldysh effect,” Phys. Rev. B Condens. Matter33(10), 6976–6982 (1986). [CrossRef] [PubMed]
  30. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Electric field dependence of optical absorption near the bandgap of quantum well structures,” Phys. Rev. B32(2), 1043–1060 (1985). [CrossRef]
  31. Y.-H. Kuo, Y.-K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  32. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris., “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Sel. Top. Quantum Electron.12(6), 1503–1513 (2006). [CrossRef]
  33. R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties in Si-Ge/Ge quantum wells,” IEEE J. Sel. Top. Quantum Electron.14(4), 1082–1089 (2008). [CrossRef]
  34. D. J. Paul, “Si/SiGe heterostructures: from material and physics to devices and circuits,” Semicond. Sci. Technol.19(10), R75–R108 (2004). [CrossRef]
  35. K. W. Goossen, G. D. Boyd, J. E. Cunningham, W. Y. Jan, D. A. B. Miller, D. S. Chemla, and R. M. Lum, “GaAs-AlGaAs multiquantum well reflection modulators grown on GaAs and silicon substrates,” IEEE Photon. Technol. Lett.1(10), 304–306 (1989). [CrossRef]
  36. S. Ren, Y. Rong, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition,” Appl. Phys. Lett.98(15), 151108 (2011). [CrossRef]
  37. T. N. Theis and P. M. Solomon, “In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor,” Proc. IEEE98(12), 2005–2014 (2010). [CrossRef]
  38. R. S. Tucker, “Green optical communications-part I: energy limitations in transport,” IEEE J. Sel. Top. Quantum Electron.17(2), 245–260 (2011). [CrossRef]
  39. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron.27(10), 2281–2295 (1991). [CrossRef]
  40. J. A. Cavailles, D. A. B. Miller, J. E. Cunningham, P. Li Kam Wa, and A. Miller, “Simultaneous measurements of electron and hole sweep-out from quantum wells and modeling of photoinduced field screening dynamics,” IEEE J. Quantum Electron.28(10), 2486–2497 (1992). [CrossRef]
  41. S. A. Claussen, E. Tasyurek, J. E. Roth, and D. A. B. Miller, “Measurement and modeling of ultrafast carrier dynamics and transport in germanium/silicon-germanium quantum wells,” Opt. Express18(25), 25596–25607 (2010). [CrossRef] [PubMed]
  42. T. K. Woodward, W. H. Knox, B. Tell, A. Vinattieri, and M. T. Asom, “Experimental studies of proton-implanted GaAs-AlGaAs multiple-quantum-well modulators for low-photocurrent applications,” IEEE J. Quantum Electron.30(12), 2854–2865 (1994). [CrossRef]
  43. S. Palermo, A. Emami-Neyestanak, and M. Horowitz, “A 90 nm CMOS 16 Gb/s transceiver for optical interconnects,” IEEE J. Solid-state Circuits43(5), 1235–1246 (2008). [CrossRef]
  44. M. N. Islam, R. L. Hillman, D. A. B. Miller, D. S. Chemla, A. C. Gossard, and J. H. English, “Electroabsorption in GaAs/AlGaAs coupled quantum well waveguides,” Appl. Phys. Lett.50(16), 1098–1100 (1987). [CrossRef]
  45. K. W. Goossen, J. E. Cunningham, D. A. B. Miller, W. Y. Jan, A. L. Lentine, A. M. Fox, and N. K. Ailawadi, “Low field electroabsorption and self-biased self-electrooptic effect device using slightly asymmetric coupled quantum wells,” Paper MB3, Topical Meeting on Quantum Optoelectronics, Salt Lake City, March 1991 (Optical Society of America, 1991).
  46. J. S. Weiner, A. C. Gossard, J. H. English, D. A. B. Miller, D. S. Chemla, and C. A. Burrus, “Low voltage modulator and self-biased self-electro-optic effect device,” Electron. Lett.23(2), 75–77 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited