OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A319–A326

Highly efficient CdS-quantum-dot-sensitized GaAs solar cells

Chien-Chung Lin, Hsin-Chu Chen, Yu Lin Tsai, Hau-Vei Han, Huai-Shiang Shih, Yi-An Chang, Hao-Chung Kuo, and Peichen Yu  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A319-A326 (2012)
http://dx.doi.org/10.1364/OE.20.00A319


View Full Text Article

Enhanced HTML    Acrobat PDF (2230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a hybrid design of traditional GaAs-based solar cell combined with colloidal CdS quantum dots. With anti-reflective feature at long wavelength and down-conversion at UV regime, the CdS quantum dot effectively enhance the overall power conversion efficiency by as high as 18.9% compared to traditional GaAs-based device. A more detailed study showed an increase of surface photoconductivity due to UV presence, and the fill factor of the solar cell can be improved accordingly.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.4236) Materials : Nanomaterials

ToC Category:
Photovoltaics

History
Original Manuscript: January 3, 2012
Revised Manuscript: February 8, 2012
Manuscript Accepted: February 29, 2012
Published: March 5, 2012

Citation
Chien-Chung Lin, Hsin-Chu Chen, Yu Lin Tsai, Hau-Vei Han, Huai-Shiang Shih, Yi-An Chang, Hao-Chung Kuo, and Peichen Yu, "Highly efficient CdS-quantum-dot-sensitized GaAs solar cells," Opt. Express 20, A319-A326 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A319


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,” J. Mater. Sci. Mater. Electron.18(S1), 15–19 (2007). [CrossRef]
  2. S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,” Thin Solid Films403-404, 1–8 (2002). [CrossRef]
  3. R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,” Thin Solid Films480-481, 509–514 (2005). [CrossRef]
  4. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture,” J. Am. Chem. Soc.130(12), 4007–4015 (2008). [CrossRef] [PubMed]
  5. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131(24), 8407–8409 (2009). [CrossRef] [PubMed]
  6. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,” Adv. Funct. Mater.18(11), 1654–1660 (2008). [CrossRef]
  7. K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009). [CrossRef]
  8. C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-junction III–V based concentrator solar cells: perspectives and challenges,” J. Sol. Energy Eng.129(3), 258–265 (2007). [CrossRef]
  9. T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells, ˮ,” Appl. Phys. Lett.70(3), 381–383 (1997). [CrossRef]
  10. W. Guter, J. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,” Appl. Phys. Lett.94(22), 223504 (2009). [CrossRef]
  11. P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of gaas photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. (Deerfield Beach Fla.)21(16), 1618–1621 (2009). [CrossRef]
  12. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  13. S. Geyer, V. J. Porter, J. E. Halpert, T. S. Mentzel, M. A. Kastner, and M. G. Bawendi, “Charge transport in mixed CdSe and CdTe colloidal nanocrystal films,” Phys. Rev. B82(15), 155201 (2010). [CrossRef]
  14. X. Wang, G. I. Koleilat, J. Tang, H. Liu, I. J. Kramer, R. Debnath, L. Brzozowski, D. A. R. Barkhouse, L. Levina, S. Hoogland, and E. H. Sargent, “Tandem colloidal quantum dot solar cells employing a graded recombination layer,” Nat. Photonics5(8), 480–484 (2011). [CrossRef]
  15. M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,” Bioscience29(9), 520–525 (1979). [CrossRef]
  16. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007). [CrossRef]
  17. T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002). [CrossRef]
  18. H.-C. Chen, C.-C. Lin, H.-W. Han, Y.-L. Tsai, C.-H. Chang, H.-W. Wang, M.-A. Tsai, H.-C. Kuo, and P. Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,” Opt. Express19(S5Suppl 5), A1141–A1147 (2011). [CrossRef] [PubMed]
  19. E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells93(8), 1182–1194 (2009). [CrossRef]
  20. E. Klampaftis and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,” Prog. Photovolt. Res. Appl.19(3), 345–351 (2011). [CrossRef]
  21. C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. C. Švrcek, C. del Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,” Sol. Energy Mater. Sol. Cells91(4), 238–249 (2007). [CrossRef]
  22. X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency,” Sol. Energy Mater. Sol. Cells95(10), 2941–2945 (2011). [CrossRef]
  23. E. Mutlugun, I. M. Soganci, and H. V. Demir, “Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV,” Opt. Express15(3), 1128–1134 (2007). [CrossRef] [PubMed]
  24. S. M. Sze, Physics of Semiconductor Devices (Wiley, 2nd Edition, 1981), Chap. 14.
  25. C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,” Phys. Rev. B62(4), 2669–2680 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited