OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A333–A339

Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs

Fan Zhang, Jie Liu, Guanjun You, Chunfeng Zhang, Suzanne E. Mohney, Min Joo Park, Joon Seop Kwak, Yongqiang Wang, Daniel D. Koleske, and Jian Xu  »View Author Affiliations

Optics Express, Vol. 20, Issue S2, pp. A333-A339 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present in this communication our study of the nonradiative energy transfer between colloidal quantum dot (QD) phosphors and nitride nanopillar light emitting diodes (LEDs). An epitaxial p-i-n InGaN/GaN multiple quantum-well (QW) heterostructure was patterned and dry-etched to form dense arrays of nanopillars using a novel etch mask consisting of self-assembled In3Sn clusters. Colloidal QD phosphors have been deposited into the gaps between the nanopillars, leading to sidewall coupling between the QDs and InGaN QW emitters. In this approach, close QW-QD contact and a low-resistance design of the LED contact layer were achieved simultaneously. Strong non-radiative energy transfer was observed from the InGaN QW to the colloidal QD phosphors, which led to a 263% enhancement in effective internal quantum efficiency for the QDs incorporated in the nanopillar LEDs, as compared to those deposited over planar LED structures. Time-resolved photoluminescence was used to characterize the energy transfer process between the QW and QDs. The measured rate of non-radiative QD-QW energy-transfer agrees well with the value calculated from the quantum efficiency data for the QDs in the nanopillar LED.

© 2012 OSA

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(260.2160) Physical optics : Energy transfer
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Light-Emitting Diodes

Original Manuscript: August 31, 2011
Revised Manuscript: December 16, 2011
Manuscript Accepted: January 6, 2012
Published: March 9, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Fan Zhang, Jie Liu, Guanjun You, Chunfeng Zhang, Suzanne E. Mohney, Min Joo Park, Joon Seop Kwak, Yongqiang Wang, Daniel D. Koleske, and Jian Xu, "Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs," Opt. Express 20, A333-A339 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. V. Kershaw, M. Harrison, A. L. Rogach, and A. Kornowski, “Development of IR-emitting colloidal II–VI quantum-dot materials,” IEEE J. Sel. Top. Quantum Electron.6(3), 534–543 (2000). [CrossRef]
  2. S. Coe-Sullivan, W.-K. Woo, J. S. Steckel, M. Bawendi, and V. Bulović, “Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices,” Org. Electron.4(2-3), 123–130 (2003). [CrossRef]
  3. J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J. E. Halpert, P. Anikeeva, L. A. Kim, V. Bulović, and M. Bawendi, “Color-saturated green-emitting QD-LEDs,” Angew. Chem. Int. Ed. Engl.45(35), 5796–5799 (2006). [CrossRef] [PubMed]
  4. J. S. Steckel, J. P. Zimmer, S. Coe-Sullivan, N. E. Stott, V. Bulović, and M. Bawendi, “Blue luminescence from (CdS)ZnS core-shell nanocrystals,” Angew. Chem. Int. Ed. Engl.43(16), 2154–2158 (2004). [CrossRef] [PubMed]
  5. Q. Sun, A. Y. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nat. Photonics1(12), 717–722 (2007). [CrossRef]
  6. H. S. Chen, C. K. Hsu, and H. Y. Hong, “InGaN–CdSe–ZnSe quantum dots white LEDs,” IEEE Photon. Technol. Lett.18(1), 193–195 (2006). [CrossRef]
  7. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, “Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well,” Nature429(6992), 642–646 (2004). [CrossRef] [PubMed]
  8. M. Achermann, M. A. Petruska, D. D. Koleske, M. H. Crawford, and V. I. Klimov, “Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion,” Nano Lett.6(7), 1396–1400 (2006). [CrossRef] [PubMed]
  9. S. Nizamoglu, E. Sari, J. H. Baek, I. H. Lee, and H. V. Demir, “Green/yellow solid-state lighting via radiative and non-radiative transfer involving colloidal semiconductor nanocrystals,” IEEE J. Sel. Top. Quantum Electron.15(4), 1163–1170 (2009). [CrossRef]
  10. S. Lu and A. Madhukar, “Nonradiative resonant excitation transfer from nanocrystal quantum dots to adjacent quantum channels,” Nano Lett.7(11), 3443–3451 (2007). [CrossRef] [PubMed]
  11. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. (Deerfield Beach Fla.)22(5), 602–606 (2010). [CrossRef] [PubMed]
  12. Y. J. Lee, S. Y. Lin, C. H. Chiu, T. C. Lu, H. C. Kuo, S. C. Wang, S. Chhajed, J. K. Kim, and E. F. Schubert, “High output power density from GaN-based two-dimensional nanorod light-emitting diode arrays,” Appl. Phys. Lett.94(14), 141111 (2009). [CrossRef]
  13. M. Hoheisel, A. Mitwalsky, and C. Mrotzek, “Microstructure and etching properties of sputtered indium-tin oxide (ITO),” Phys. Status Solidi A123(2), 461–472 (1991). [CrossRef]
  14. S. J. Pearton, C. R. Abernathy, and F. Ren, Gallium Nitride Processing for Electronics, Sensors and Spintronics (Springer, London, 2006).
  15. C. F. Zhang, F. Zhang, T. Zhu, A. Cheng, J. Xu, Q. Zhang, S. E. Mohney, R. H. Henderson, and Y. A. Wang, “Two-photon-pumped lasing from colloidal nanocrystal quantum dots,” Opt. Lett.33(21), 2437–2439 (2008). [CrossRef] [PubMed]
  16. C. F. Zhang, J. Xu, T. Zhu, F. Zhang, Z. Tan, S. J. Schiff, H. Su, S. Gao, and A. Y. Wang, “Quantum efficiency of stimulated emission in colloidal semiconductor nanocrystal quantum dots,” Phys. Rev. B80(3), 035333 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited