OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S2 — Mar. 12, 2012
  • pp: A340–A350

Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity

Han Zhou, Tongxiang Fan, Jian Ding, Di Zhang, and Qixin Guo  »View Author Affiliations


Optics Express, Vol. 20, Issue S2, pp. A340-A350 (2012)
http://dx.doi.org/10.1364/OE.20.00A340


View Full Text Article

Enhanced HTML    Acrobat PDF (4934 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general method has been developed for the synthesis of various hollow TiO2 micro/nanostructures with bacteria as templates to further study the structural effect on photocatalytic hydrogen evolution properties. TiO2 hollow spheres and hollow tubes, served as prototypes, are obtained via a surface sol-gel process using cocci and bacillus as biotemplates, respectively. The formation mechanisms are based on absorption of metal-alkoxide molecules from solution onto functional cell wall surfaces and subsequent hydrolysis to give nanometer-thick oxide layers. The UV-Vis absorption spectrum shows that the porous TiO2 hollow spheres have enhanced light harvesting property compared with the corresponding solid counterpart. This could be attributed to their unique hollow porous micro/nanostructures with microsized hollow cavities and nanovoids which could bring about multiple scattering and rayleigh scattering of light, respectively. The hollow TiO2 structures exhibit superior photocatalytic hydrogen evolution activities under UV and visible light irradiation in the presence of sacrificial reagents. The hydrogen evolution rate of hollow structures is about 3.6 times higher than the solid counterpart and 1.5 times higher than P25-TiO2. This work demonstrates the structural effect on enhancing the photocatalytic hydrogen evolution performance which would pave a new pathway to tailor and improve catalytic properties over a broad range.

© 2012 OSA

OCIS Codes
(160.6000) Materials : Semiconductor materials
(350.5130) Other areas of optics : Photochemistry

ToC Category:
Photocatalysis

History
Original Manuscript: September 8, 2011
Revised Manuscript: December 11, 2011
Manuscript Accepted: December 11, 2011
Published: March 9, 2012

Virtual Issues
Vol. 7, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Han Zhou, Tongxiang Fan, Jian Ding, Di Zhang, and Qixin Guo, "Bacteria-directed construction of hollow TiO2 micro/nanostructures with enhanced photocatalytic hydrogen evolution activity," Opt. Express 20, A340-A350 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S2-A340


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. S. Lewis and D. G. Nocera, “Powering the planet: chemical challenges in solar energy utilization,” Proc. Natl. Acad. Sci. U.S.A.103(43), 15729–15735 (2006). [CrossRef] [PubMed]
  2. M. Hambourger, G. F. Moore, D. M. Kramer, D. Gust, A. L. Moore, and T. A. Moore, “Biology and technology for photochemical fuel production,” Chem. Soc. Rev.38(1), 25–35 (2009). [CrossRef] [PubMed]
  3. M. Woodhouse and B. A. Parkinson, “Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis,” Chem. Soc. Rev.38(1), 197–210 (2008). [CrossRef] [PubMed]
  4. F. E. Osterloh, “Inorganic materials as catalysts for photochemical splitting of water,” Chem. Mater.20(1), 35–54 (2008). [CrossRef]
  5. H. Zhou, T. Fan, and D. Zhang, “An insight into artificial leaves for sustainable energy inspired by natural photosynthesis,” ChemCatChem3(3), 513–528 (2011). [CrossRef]
  6. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature238(5358), 37–38 (1972). [CrossRef] [PubMed]
  7. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev.11(3), 401–425 (2007). [CrossRef]
  8. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev.107(7), 2891–2959 (2007). [CrossRef] [PubMed]
  9. I. Kontos, V. Likodimos, T. Stergiopoulos, D. S. Tsoukleris, P. Falaras, I. Rabias, G. Papavassiliou, D. Kim, J. Kunze, and P. Schmuki, “Self-organized anodic TiO2 nanotube arrays functionalized by iron oxide nanoparticles,” Chem. Mater.21(4), 662–672 (2009). [CrossRef]
  10. H. Zhou, E. M. Sabio, T. K. Townsend, T. Fan, D. Zhang, and F. E. Osterloh, “Assembly of core-shell structures for photocatalytic hydrogen evolution from aqueous methanol,” Chem. Mater.22(11), 3362–3368 (2010). [CrossRef]
  11. Z. Liu, D. D. Sun, P. Guo, and J. O. Leckie, “One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates,” Chemistry13(6), 1851–1855 (2007). [CrossRef] [PubMed]
  12. Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, and B. Guan, “The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity,” Nanotechnology20(23), 235701 (2009). [CrossRef] [PubMed]
  13. S. Xuan, W. Jiang, X. Gong, Y. Hu, and Z. Chen, “Magnetically separable Fe3O4/TiO2 hollow spheres: fabrication and photocatalytic activity,” J. Phys. Chem. C113(2), 553–558 (2009). [CrossRef]
  14. T. Fan, S. K. Chow, and D. Zhang, “Biomorphic mineralization: from biology to materials,” Prog. Mater. Sci.54(5), 542–659 (2009). [CrossRef]
  15. H. Zhou, T. Fan, and D. Zhang, “Biotemplated materials for sustainable energy and environment: Current status and challenges,” ChemSusChem4(10), 1344–1387 (2011). [CrossRef] [PubMed]
  16. J. He and T. Kunitake, “Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of titania and zirconia,” Chem. Mater.16(13), 2656–2661 (2004). [CrossRef]
  17. J. Huang and T. Kunitake, “Nano-precision replication of natural cellulosic substances by metal oxides,” J. Am. Chem. Soc.125(39), 11834–11835 (2003). [CrossRef] [PubMed]
  18. S. R. Hall, H. Bolger, and S. Mann, “Morphosynthesis of complex inorganic forms using pollen grain templates,” Chem. Commun. (Camb.) (22), 2784–2785 (2003). [CrossRef] [PubMed]
  19. H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo, “Artificial inorganic leafs for efficient photochemical hydrogen production inspired by natural photosynthesis,” Adv. Mater. (Deerfield Beach Fla.)22(9), 951–956 (2010). [CrossRef] [PubMed]
  20. X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo, and H. Ogawa, “Enhanced light-harvesting and photocatalytic properties in morph-TiO2 from green leaf biotemplates,” Adv. Funct. Mater.19(1), 45–56 (2009). [CrossRef]
  21. S. Schultze-Lam, G. Harauz, and T. J. Beveridge, “Participation of a cyanobacterial S layer in fine-grain mineral formation,” J. Bacteriol.174(24), 7971–7981 (1992). [PubMed]
  22. W. Jiang, A. Saxena, B. Song, B. B. Ward, T. J. Beveridge, and S. C. B. Myneni, “Elucidation of functional groups on gram-positive and gram-negative bacterial surfaces using infrared spectroscopy,” Langmuir20(26), 11433–11442 (2004). [CrossRef] [PubMed]
  23. J. Huang, N. Matsunaga, K. Shimanoe, N. Yamazoe, and T. Kunitake, “Nanotubular SnO2 templated by cellulose fibers: synthesis and gas sensing,” Chem. Mater.17(13), 3513–3518 (2005). [CrossRef]
  24. H. Ogihara, M. Sadakane, Y. Nodasaka, and W. Ueda, “Shape-controlled synthesis of ZrO2, A2O3, and SiO2 nanotubes using carbon nanofibers as templates,” Chem. Mater.18(21), 4981–4983 (2006). [CrossRef]
  25. X. Sun, J. Liu, and Y. Li, “Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres,” Chemistry12(7), 2039–2047 (2006). [CrossRef] [PubMed]
  26. C. Lin, Y. Li, M. Yu, P. Yang, and J. Lin, “A facile synthesis and characterization of monodisperse spherical pigment particles with a core/shell structure,” Adv. Funct. Mater.17(9), 1459–1465 (2007). [CrossRef]
  27. W. C. Li, A. H. Lu, C. Weidenthaler, and F. Schuth, “Hard-templating pathway to create mesoporous magnesium oxide,” Chem. Mater.16(26), 5676–5681 (2004). [CrossRef]
  28. T. J. Hendricks and J. R. Howell, “New radiative analysis approach for reticulated porous ceramics using discrete ordinates method,” J. Heat Transfer118(4), 911–917 (1996). [CrossRef]
  29. T. J. Hendricks and J. R. Howell, “Adsorption/scattering coefficient and scattering phase functions in reticulated porous ceramics,” J. Heat Transfer118(1), 79–87 (1996). [CrossRef]
  30. C. Dodson, J. Spicer, M. Fitch, P. Schuster, and R. Osiander, “Propagation of terahertz radiation in porous polymer and ceramic materials,” AIP Conf. Proc.760, 562–569 (2005). [CrossRef]
  31. W. M. Robertson, G. Arjavalingam, and S. L. Shinde, “Microwave dielectric measurements of zirconia-alumina ceramic composites: a test of the Clausius–Mossotti mixture equations,” J. Appl. Phys.70(12), 7648–7650 (1991). [CrossRef]
  32. M. Banerjee, S. K. Datta, and H. Saha, “Enhanced optical absorption in a thin silicon layer with nanovoids,” Nanotechnology16(9), 1542–1548 (2005). [CrossRef]
  33. H. Seel and R. Brendel, “Optical absorption in crystalline Si films containing spherical voids for internal light scattering,” Thin Solid Films451–452, 608–611 (2004). [CrossRef]
  34. K. Domen, A. Kudo, M. Shibata, A. Tanaka, K. Maruya, and T. Onishi, “Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure,” J. Chem. Soc. Chem. Commun. (23), 1706–1707 (1986). [CrossRef]
  35. A. Ishikawa, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, and K. Domen, “Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm),” J. Am. Chem. Soc.124(45), 13547–13553 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited