OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S3 — May. 7, 2012
  • pp: A385–A394

Nanophotonic light trapping with patterned transparent conductive oxides

Alok P. Vasudev, Jon A. Schuller, and Mark L. Brongersma  »View Author Affiliations


Optics Express, Vol. 20, Issue S3, pp. A385-A394 (2012)
http://dx.doi.org/10.1364/OE.20.00A385


View Full Text Article

Enhanced HTML    Acrobat PDF (1995 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Transparent conductive oxides (TCOs) play a crucial role in solar cells by efficiently transmitting sunlight and extracting photo-generated charge. Here, we show how nanophotonics concepts can be used to transform TCO films into effective photon management layers for solar cells. This is accomplished by patterning the TCO layer present on virtually every thin-film solar cell into an array of subwavelength beams that support optical (Mie) resonances. These resonances can be exploited to concentrate randomly polarized sunlight or to effectively couple it to guided and diffracted modes. We first demonstrate these concepts with a model system consisting of a patterned TCO layer on a thin silicon (Si) film and outline a design methodology for high-performance, TCO-based light trapping coatings. We then show that the short circuit current density from a 300 nm thick amorphous silicon (a-Si) cell with an optimized TCO anti-reflection coating can be enhanced from 19.9 mA/cm2 to 21.1 mA/cm2, out of a possible 26.0 mA/cm2, by using an optimized nanobeam array. The key differences and advantages over plasmonic light trapping layers will be discussed.

© 2012 OSA

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(290.4020) Scattering : Mie theory
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Photovoltaics

History
Original Manuscript: January 12, 2012
Revised Manuscript: March 5, 2012
Manuscript Accepted: March 9, 2012
Published: March 15, 2012

Citation
Alok P. Vasudev, Jon A. Schuller, and Mark L. Brongersma, "Nanophotonic light trapping with patterned transparent conductive oxides," Opt. Express 20, A385-A394 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S3-A385


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hecht, Optics (Addison-Wesley, Massachusetts, 2002).
  2. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010). [CrossRef] [PubMed]
  3. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater.21, 3504–3509 (2009). [CrossRef]
  4. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23, 1272–1276 (2011). [CrossRef] [PubMed]
  5. C. Rockstuhl, F. Lederer, K. Bittkau, T. Beckers, and R. Carius, “The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces,” Appl. Phys. Lett.95, 211101 (2009). [CrossRef]
  6. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009). [CrossRef]
  7. A. Raman, Z. Yu, and S. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19, 19015–19026 (2011). [CrossRef] [PubMed]
  8. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  9. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8, 689–692 (2008). [CrossRef] [PubMed]
  10. L. Goris, R. Noriega, M. Donovan, J. Jokisaari, G. Kusinski, and A. Salleo, “Intrinsic and doped zinc oxide nanowires for transparent electrode fabrication via low-temperature solution synthesis,” J. Electron. Mater.38, 586–595 (2009). [CrossRef]
  11. J. Muller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy77, 917–930 (2004). [CrossRef]
  12. M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, and T. Pertsch, “Employing dielectric diffractive structures in solar cells–a numerical study,” Phys. Status Solidi A205, 2777–2795 (2008). [CrossRef]
  13. C. Battaglia, J. Escarre, K. Soderstrom, M. Charriere, M. Despeisse, F. Haug, and C. Ballif, “Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells,” Nat. Photonics5, 535–538 (2011). [CrossRef]
  14. V. E. Ferry, M. A. Verschuuren, M. C. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011). [CrossRef] [PubMed]
  15. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985), Vol. 4.
  16. X. W. Sun and H. S. Kwok, “Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition,” J. Appl. Phys.86, 408–411 (1999). [CrossRef]
  17. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 2010).
  18. K. Vahala, Optical Microcavities (World Scientific, New Jersey, 2004). [CrossRef]
  19. A. W. Poon, F. Courvoisier, and R. K. Chang, “Multimode resonances in square-shaped optical microcavities,” Opt. Lett.26, 632–634 (2001). [CrossRef]
  20. L. Cao, J. S. White, J. S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8, 643–647 (2009). [CrossRef] [PubMed]
  21. O. L. Muskens, S. L. Diedenhofen, B. C. Kaas, R. E. Algra, E. Bakkers, J. G. Rivas, and A. Lagendijk, “Large photonic strength of highly tunable resonant nanowire materials,” Nano Lett.9, 930–934 (2009). [CrossRef] [PubMed]
  22. L. Cao, P. Fan, E. S. Barnard, A. M. Brown, and M. L. Brongersma, “Tuning the color of silicon nanowires,” Nano Lett.10, 2649–2654 (2010). [CrossRef] [PubMed]
  23. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10, 439–445 (2010). [CrossRef] [PubMed]
  24. L. Cao, J. S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10, 1229–1233 (2010). [CrossRef] [PubMed]
  25. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009). [CrossRef]
  26. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).
  27. J. W. Goodman, Introduction to Fourier Optics (Roberts & Co., Colorado, 2005).
  28. Z. L. Pei, X. B. Zhang, G. P. Zhang, J. Gong, C. Sun, R. F. Huang, and L. S. Wen, “Transparent conductive ZnO: Al thin films deposited on flexible substrates prepared by direct current magnetron sputtering,” Thin Solid Films497, 20–23 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited