OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S3 — May. 7, 2012
  • pp: A412–A417

Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells

Ting-Gang Chen, Peichen Yu, Yu-Lin Tsai, Chang-Hong Shen, Jia-Min Shieh, Min-An Tsai, and Hao-Chung Kuo  »View Author Affiliations

Optics Express, Vol. 20, Issue S3, pp. A412-A417 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nano-patterned glass superstrates obtained via a large-area production approach are desirable for antireflection and light trapping in thin-film solar cells. The tapered nanostructures allow a graded refractive index profile between the glass and material interfaces, leading to suppressed surface reflection and increased forward diffraction of light. In this work, we investigate nanostructured glass patterns with different aspect ratios using scalable nanosphere lithography for hydrogenated amorphous silicon (a-Si:H) thin film solar cells. Compared to flat glass cell and Asahi U-type glass cell, enhancements in short-circuit current density (Jsc) of 51.6% and 8%, respectively, were achieved for a moderate aspect ratio of 0.16. The measured external quantum efficiencies (EQE) spectra confirmed a broadband enhancement due to antireflection and light trapping properties.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: March 13, 2012
Revised Manuscript: April 5, 2012
Manuscript Accepted: April 8, 2012
Published: April 12, 2012

Ting-Gang Chen, Peichen Yu, Yu-Lin Tsai, Chang-Hong Shen, Jia-Min Shieh, Min-An Tsai, and Hao-Chung Kuo, "Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a-Si:H thin film solar cells," Opt. Express 20, A412-A417 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. F. Service, “Solar energy. Can the upstarts top silicon?” Science319(5864), 718–720 (2008). [PubMed]
  2. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12, 113–142 (2004).
  3. C. Haase and H. Stiebig, “Optical properties of thin-film silicon solar cells with grating couplers,” Prog. Photovolt. Res. Appl.14, 629–641 (2006).
  4. C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89, 7722–7726 (2001).
  5. C. Ulbrich, M. Peters, B. Bläsi, T. Kirchartz, A. Gerber, and U. Rau, “Enhanced light trapping in thin-film solar cells by a directionally selective filter,” Opt. Express18(Suppl 2), A133–A138 (2010). [PubMed]
  6. T. Tiedje, B. Abeles, J. M. Cebulka, and J. Pelz, “Photoconductivity enhancement by light trapping in rough amorphous silicon,” Appl. Phys. Lett.42, 712–714 (1983).
  7. J. C. Lee, V. Dutta, J. S. Yoo, J. S. Yi, J. S. Song, and K. H. Yoon, “Superstrate p-i-n a-Si:H solar cells on textured ZnO: Al front transparent conduction oxide,” Superlattices Microstruct.42, 369–374 (2007).
  8. H. Sai, H. Jia, and M. Kondo, “Impact of front and rear texture of thin-film microcrystalline silicon solar cells on their light trapping properties,” J. Appl. Phys.108, 044505 (2010).
  9. J. Krc, B. Lipovsek, M. Bokalic, A. Campa, T. Oyama, M. Kambe, T. Matsui, H. Sai, M. Kondo, and M. Topic, “Potential of thin-film silicon solar cells by using high haze TCO superstrates,” Thin Solid Films518, 3054–3058 (2010).
  10. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, Y. Li, H. Li, W. Xu, and B. Yang, “Biomimetic surfaces for high-performance optics,” Adv. Mater. (Deerfield Beach Fla.)21, 4731–4734 (2009).
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [PubMed]
  12. C. Battaglia, C. M. Hsu, K. Söderström, J. Escarré, F. J. Haug, M. Charrière, M. Boccard, M. Despeisse, D. T. L. Alexander, M. Cantoni, Y. Cui, and C. Ballif, “Light trapping in solar cells: can periodic beat random?” ACS Nano6(3), 2790–2797 (2012). [PubMed]
  13. C. H. Chiu, P. Yu, H. C. Kuo, C. C. Chen, T. C. Lu, S. C. Wang, S. H. Hsu, Y. J. Cheng, and Y. C. Chang, “Broadband and omnidirectional antireflection employing disordered GaN nanopillars,” Opt. Express16(12), 8748–8754 (2008). [PubMed]
  14. Y. H. Pai, Y. C. Lin, J. L. Tsai, and G. R. Lin, “Nonlinear dependence between the surface reflectance and the duty-cycle of semiconductor nanorod array,” Opt. Express19(3), 1680–1690 (2011). [PubMed]
  15. H. Li, R. H. Franken, R. L. Stolk, J. A. Schuttauf, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “On the development of single and multijunction solar cells with hot-wire CVD eposited active layers,” J. Non-Cryst. Solids354, 2445–2450 (2008).
  16. P. Doshi, G. E. Jellison, and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt.36(30), 7826–7837 (1997). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited