OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S3 — May. 7, 2012
  • pp: A418–A430

Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells

Jacob Trevino, Carlo Forestiere, Giuliana Di Martino, Selcuk Yerci, Francesco Priolo, and Luca Dal Negro  »View Author Affiliations


Optics Express, Vol. 20, Issue S3, pp. A418-A430 (2012)
http://dx.doi.org/10.1364/OE.20.00A418


View Full Text Article

Enhanced HTML    Acrobat PDF (1603 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design, fabrication and measurement of ultra-thin film Silicon On Insulator (SOI) Schottky photo-detector cells with nanostructured plasmonic arrays, demonstrating broadband enhanced photocurrent generation using aperiodic golden angle spiral geometry. Both golden angle spiral and periodic arrays of various center-to-center particle spacing were investigated to optimize the photocurrent enhancement. The primary photocurrent enhancement region is designed for the spectral range 600nm-950nm, where photon absorption in Si is inherently poor. We demonstrate that cells coupled to spiral arrays exhibit higher photocurrent enhancement compared to optimized periodic gratings structures. The findings are supported through coupled-dipole numerical simulations of radiation diagrams and finite difference time domain simulations of enhanced absorption in Si thin-films.

© 2012 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Photovoltaics

History
Original Manuscript: February 17, 2012
Manuscript Accepted: April 5, 2012
Published: April 19, 2012

Citation
Jacob Trevino, Carlo Forestiere, Giuliana Di Martino, Selcuk Yerci, Francesco Priolo, and Luca Dal Negro, "Plasmonic-photonic arrays with aperiodic spiral order for ultra-thin film solar cells," Opt. Express 20, A418-A430 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S3-A418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).
  2. M. A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond,” Physica E14(1-2), 65–70 (2002). [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  4. K. Nakayama, K. Tanabe, and H. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett.93(12), 121904 (2008). [CrossRef]
  5. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  6. C. Rockstuhl, S. Fahr, and F. Lederer, “Absorption enhancement in solar cells by localized plasmon polaritons,” J. Appl. Phys.104(12), 123102 (2008). [CrossRef]
  7. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red response in thin-film a-Si:H solar cells with soft-imprinted plasmonic back refelctors,” Appl. Phys. Lett.95(18), 183503 (2009). [CrossRef]
  8. D. Song, E. Cho, G. Conibeer, C. Flynn, Y. Huang, and M. A. Green, “Structural, electrical and photovoltaic characterization of of silicon nanocrystals embedded in SiC matrix and Si nanocrystals/crystalline silicon heterojunction devices,” Sol. Energy Mater. Sol. Cells92, 474–481 (2008). [CrossRef]
  9. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9(3), 239–244 (2010). [PubMed]
  10. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett.8(12), 4391–4397 (2008). [CrossRef] [PubMed]
  11. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10(6), 1979–1984 (2010). [CrossRef] [PubMed]
  12. R. Biswas, J. Bhattacharya, B. Lewis, N. Chakravarty, and V. Dalal, “Enhanced nanocrystalline silicon solar cell with a photonic crystal back-reflector,” Sol. Energy Mater. Sol. Cells94(12), 2337–2342 (2010). [CrossRef]
  13. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  14. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18(S2Suppl 2), A237–A245 (2010). [CrossRef] [PubMed]
  15. C. Eisele, C. E. Nebel, and M. Stutzmann, “Periodic light coupler gratings in amorphous thin film solar cells,” J. Appl. Phys.89(12), 7722 (2001). [CrossRef]
  16. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett.91(6), 061116 (2007). [CrossRef]
  17. D. Shir, J. Yoon, D. Chanda, J. H. Ryu, and J. A. Rogers, “Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement,” Nano Lett.10(8), 3041–3046 (2010). [CrossRef] [PubMed]
  18. R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys.102(1), 014503 (2007). [CrossRef]
  19. G. Yue, L. Sivec, J. M. Owens, B. Yan, J. Yang, and S. Guha, “Optimization of back reflector for high efficiency hydrogenated nano-crystalline silicon solar cells,” Appl. Phys. Lett.95(26), 263501 (2009). [CrossRef]
  20. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett.73(26), 3815–3817 (1998). [CrossRef]
  21. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  22. K. Nakayama, K. Tanabe, and H. A. Atwater, “Plasmonic nanoparticle enhanced light absorption in GaAs solar cells,” Appl. Phys. Lett.93(12), 121904 (2008). [CrossRef]
  23. A. E. Ostfeld and D. Pacifici, “Plasmonic concentrators for enhanced light absorption in ultrathin film organic photovoltaics,” Appl. Phys. Lett.98(11), 113112 (2011). [CrossRef]
  24. V. E. Ferry, M. A. Verschuuren, M. C. Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett.11(10), 4239–4245 (2011). [CrossRef] [PubMed]
  25. J. A. Adam, A Mathematical Nature Walk (Princeton University Press, 2009).
  26. J. Trevino, H. Cao, and L. Dal Negro, “Circularly symmetric light scattering from nanoplasmonic spirals,” Nano Lett.11(5), 2008–2016 (2011). [CrossRef] [PubMed]
  27. E. Macia, Aperiodic Structures in Condensed Matter: Fundamentals and Applications (CRC Press Taylor & Francis, 2009).
  28. M. Naylor, “Golden, √ 2, and π flowers: a spiral story,” Math. Mag.75, 163–172 (2002). [CrossRef]
  29. G. J. Mitchison, “Phyllotaxis and the fibonacci series,” Science196(4287), 270–275 (1977). [CrossRef] [PubMed]
  30. C. Janot, Quasicrystals: A Primer (Clarendon Press, 1992).
  31. C. Forestiere, G. Miano, G. Rubinacci, and L. Dal Negro, “Role of aperiodic order in the spectral, localization, and scaling properties of plasmon modes for the design of nanoparticles arrays,” Phys. Rev. B79(8), 085404 (2009). [CrossRef]
  32. J. Trevino, S. F. Liew, H. Noh, H. Cao, and L. Dal Negro, “Geometrical structure, multifractal spectra and localized optical modes of aperiodic Vogel spirals,” Opt. Express20(3), 3015–3033 (2012). [CrossRef] [PubMed]
  33. S. F. Liew, H. Noh, J. Trevino, L. D. Negro, and H. Cao, “Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral,” Opt. Express19(24), 23631–23642 (2011). [CrossRef] [PubMed]
  34. M. E. Pollard and G. J. Parker, “Low-contrast bandgaps of a planar parabolic spiral lattice,” Opt. Lett.34(18), 2805–2807 (2009). [CrossRef] [PubMed]
  35. C. Forestiere, G. Miano, S. V. Boriskina, and L. Dal Negro, “The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays,” Opt. Express17(12), 9648–9661 (2009). [CrossRef] [PubMed]
  36. C. Forestiere, G. F. Walsh, G. Miano, and L. Dal Negro, “Nanoplasmonics of prime number arrays,” Opt. Express17(26), 24288–24303 (2009). [CrossRef] [PubMed]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B Condens. Matter6(12), 4370–4379 (1972). [CrossRef]
  38. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2004).
  39. S. Y. Lee, C. Forestiere, A. J. Pasquale, J. Trevino, G. Walsh, P. Galli, M. Romagnoli, and L. Dal Negro, “Plasmon-enhanced structural coloration of metal films with isotropic Pinwheel nanoparticle arrays,” Opt. Express19(24), 23818–23830 (2011). [CrossRef] [PubMed]
  40. Lumerical FDTD Solutions, www.lumerical.com
  41. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd edn. (Artech House, 2005).
  42. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  43. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, and K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells,” J. Phys. D Appl. Phys.44(18), 185101 (2011). [CrossRef]
  44. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited