OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A452–A464

Optical absorption enhancement in a hybrid system photonic crystal – thin substrate for photovoltaic applications

Jeronimo Buencuerpo, Luis E. Munioz-Camuniez, Maria L. Dotor, and Pablo A. Postigo  »View Author Affiliations

Optics Express, Vol. 20, Issue S4, pp. A452-A464 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is performed, showing an 18% of improvement for the nanostructured device.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5298) Materials : Photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: December 16, 2011
Revised Manuscript: April 24, 2012
Manuscript Accepted: April 26, 2012
Published: May 10, 2012

Jeronimo Buencuerpo, Luis E. Munioz-Camuniez, Maria L. Dotor, and Pablo A. Postigo, "Optical absorption enhancement in a hybrid system photonic crystal – thin substrate for photovoltaic applications," Opt. Express 20, A452-A464 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  2. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18(5), 4260–4274 (2010). [CrossRef] [PubMed]
  3. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Opt. Express17, 191102 (2009).
  4. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  5. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  6. Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Opt. Express19(S5Suppl 5), A1051–A1056 (2011). [CrossRef] [PubMed]
  7. P. A. Postigo, M. Kaldirim, I. Prieto, L. J. Martínez, M. L. Dotor, M. Galli, and L. C. Andreani, “Enhancement of solar cell efficiency using two-dimensional photonic crystals,” Proc. SPIE7713, 771307(2010). [CrossRef]
  8. L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express16(12), 8509–8518 (2008). [CrossRef] [PubMed]
  9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).
  10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  11. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20, A224–A244 (2012). [CrossRef] [PubMed]
  12. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  13. “Solar Spectral Irradiance: ASTM G-173,Standard tables for reference solar spectral irradiances: direct normal and circumsolar” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  15. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  16. M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002). [CrossRef]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  18. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105–063112 (2007). [CrossRef]
  19. K. von Rottkay, M. Rubin, and N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings” Mater. Res. Soc. Symp. Proc. 403, 551 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited