OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A476–A488

Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings

Pierfrancesco Zilio, Davide Sammito, Gabriele Zacco, Marco Mazzeo, Giuseppe Gigli, and Filippo Romanato  »View Author Affiliations

Optics Express, Vol. 20, Issue S4, pp. A476-A488 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2406 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The integration of a plasmonic lamellar grating in a heterostructure organic solar cell as a light trapping mechanism is investigated with numerical Finite Elements simulations. A global optimization of all the geometric parameters has been performed. The obtained wide-band enhancement in optical absorption is correlated with both the propagating and the localized plasmonic modes of the structure, which have been identified and characterized in detail.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 15, 2012
Revised Manuscript: April 13, 2012
Manuscript Accepted: April 19, 2012
Published: February 15, 2012

Pierfrancesco Zilio, Davide Sammito, Gabriele Zacco, Marco Mazzeo, Giuseppe Gigli, and Filippo Romanato, "Light absorption enhancement in heterostructure organic solar cells through the integration of 1-D plasmonic gratings," Opt. Express 20, A476-A488 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Hoppe and N. S. Sariciftci, “Organic solar cells: an overview,” J. Mater. Res.19(07), 1924–1945 (2004). [CrossRef]
  2. T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007). [CrossRef]
  3. P. E. Shaw, A. Ruseckas, and I. D. W. Samuel, “Exciton diffusion measurements in poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008). [CrossRef]
  4. L. Tsakalakos, “Nanostructures for photovoltaics,” Mater. Sci. Eng. Rep.62(6), 175–189 (2008). [CrossRef]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  6. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells--a survey of plasmonic nanostructures,” Opt. Express20(S2Suppl 2), A177–A189 (2012). [CrossRef] [PubMed]
  7. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  8. M. Agrawal and P. Peumans, “Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells,” Opt. Express16(8), 5385–5396 (2008). [CrossRef] [PubMed]
  9. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle arrays,” Nano Lett.11(4), 1760–1765 (2011). [CrossRef] [PubMed]
  10. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011). [CrossRef] [PubMed]
  11. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009). [CrossRef]
  12. M. G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010). [CrossRef]
  13. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  14. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells trough the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  15. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011). [CrossRef] [PubMed]
  16. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92(1), 013504 (2008). [CrossRef]
  17. S. A. Maier, Plasmonics Fundamentals and Applications (Springer 2007).
  18. K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, “Highly efficient organic devices based on electrically doped transport layers,” Chem. Rev.107(4), 1233–1271 (2007). [CrossRef] [PubMed]
  19. M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D’ Agostino, Y. Duan, R. Cingolani, and G. Gigli, “Shaping white light through electroluminescent fully organic coupled microcavities,” Adv. Mater. (Deerfield Beach Fla.)22(42), 4696–4700 (2010). [CrossRef] [PubMed]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier, 1998).
  21. Comsol Multiphysics, http://www.comsol.com .
  22. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley & Sons, 2002).
  23. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15(17), 10869–10877 (2007). [CrossRef] [PubMed]
  24. E. S. Barnard, J. S. White, A. Chandran, and M. L. Brongersma, “Spectral properties of plasmonic resonator antennas,” Opt. Express16(21), 16529–16537 (2008). [CrossRef] [PubMed]
  25. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited