OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A510–A518

Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5: Ce3+, Yb3+

Wenli Zhou, Jie Yang, Jing Wang, Ye Li, Xiaojun Kuang, Jinke Tang, and Hongbin Liang  »View Author Affiliations


Optics Express, Vol. 20, Issue S4, pp. A510-A518 (2012)
http://dx.doi.org/10.1364/OE.20.00A510


View Full Text Article

Enhanced HTML    Acrobat PDF (1018 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of the 5d energy locations of Ce3+ centers on the NIR quantum cutting process were studied in Y2SiO5 with two different substitutional Y3+ lattice sites for Ce3+ and Yb3+. Powder XRD and Rietveld refinement were used to characterize phase purity, crystal structure, lattice parameters and occupation fractions of Y2-x-yCexYbySiO5 (x = 0.002 and 0.3, y = 0-0.2). PLE and PL spectra show that both kinds of Ce3+ centers in Y2-x-yCexYbySiO5 can cooperatively transfer energy to Yb3+-Yb3+ ions pair. The dependence of the integrated emission intensities of Ce3+ and Yb3+, decay lifetime (τ) of Ce3+, nonradiative energy transfer rate (KCe→Yb), cooperative energy transfer efficiency (ηCET) and quantum efficiency (ηQE) on the concentration of Yb3+ ions were studied in details. More importantly, these results demonstrate that the 5d energy locations of Ce3+ ions have a great influence on NIR quantum cutting process in Ce3+-Yb3+ system: the closer they are to twice the absorption energy (~20000 cm−1) of Yb3+, the higher the cooperative energy transfer efficiency from the lowest 5d excited state of Ce3+ to the Yb3+-Yb3+ ions pair.

© 2012 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(260.2160) Physical optics : Energy transfer
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fluorescent and Luminescent Materials

History
Original Manuscript: March 16, 2012
Revised Manuscript: May 10, 2012
Manuscript Accepted: May 24, 2012
Published: June 7, 2012

Citation
Wenli Zhou, Jie Yang, Jing Wang, Ye Li, Xiaojun Kuang, Jinke Tang, and Hongbin Liang, "Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5: Ce3+, Yb3+," Opt. Express 20, A510-A518 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S4-A510


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. Y. Zhang and X. Y. Huang, “Recent progress in quantum cutting phosphors,” Prog. Mater. Sci.55(5), 353–427 (2010). [CrossRef]
  2. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-Infrared Quantum Cutting for Photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)21(30), 3073–3077 (2009). [CrossRef]
  3. B. M. van der Ende, L. Aarts, and A. Meijerink, “Lanthanide ions as spectral converters for solar cells,” Phys. Chem. Chem. Phys.11(47), 11081–11095 (2009). [CrossRef] [PubMed]
  4. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  5. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,” J. Appl. Phys.92(3), 1668–1674 (2002). [CrossRef]
  6. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, “Downconversion for solar cells in YF3:Nd3+, Yb3+,” Phys. Rev. B81(3), 035107–035116 (2010). [CrossRef]
  7. X. Y. Huang, D. C. Yu, and Q. Y. Zhang, “Enhanced near-infrared quantum cutting in GdBO3:Tb3+,Yb3+ phosphors by Ce3+ codoping,” J. Appl. Phys.106(11), 113521 (2009). [CrossRef]
  8. L. Aarts, B. M. van der Ende, M. F. Reid, and A. Meijerink, “Downconversion for Solar Cells in YF3:Pr3+, Yb3+,” Spectrosc. Lett.43(5), 373–381 (2010). [CrossRef]
  9. J. T. van Wijngaarden, S. Scheidelaar, T. J. H. Vlugt, M. F. Reid, and A. Meijerink, “Energy transfer mechanism for downconversion in the (Pr3+, Yb3+) couple,” Phys. Rev. B81(15), 155112 (2010). [CrossRef]
  10. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, “Quantum cutting by cooperative energy transfer in YbxY1-xPO4: Tb3+,” Phys. Rev. B71(1), 014119–014129 (2005). [CrossRef]
  11. J. D. Chen, H. Guo, Z. Q. Li, H. Zhang, and Y. X. Zhuang, “Near-infrared quantum cutting in Ce3+, Yb3+ co-doped YBO3 phosphors by cooperative energy transfer,” Opt. Mater.32(9), 998–1001 (2010). [CrossRef]
  12. X. F. Liu, Y. Teng, Y. X. Zhuang, J. H. Xie, Y. B. Qiao, G. P. Dong, D. P. Chen, and J. R. Qiu, “Broadband conversion of visible light to near-infrared emission by Ce3+, Yb3+-codoped yttrium aluminum garnet,” Opt. Lett.34(22), 3565–3567 (2009). [CrossRef] [PubMed]
  13. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys.106(4), 043101–043105 (2009). [CrossRef]
  14. J. J. Zhou, Y. Teng, G. Lin, X. Q. Xu, Z. J. Ma, and J. R. Qiu, “Broad-Band Excited Quantum Cutting in Eu2+-Yb3+ Co-doped Aluminosilicate Glasses,” J. Electrochem. Soc.157(8), B1146–B1148 (2010). [CrossRef]
  15. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+,Tb3+,Yb3+ phosphor,” J. Mater. Chem.19(38), 7088–7092 (2009). [CrossRef]
  16. G. G. Zhang, C. M. Liu, J. Wang, X. J. Kuang, and Q. Su, “A dual-mode solar spectral converter CaLaGa3S6O:Ce3+,Pr3+: UV-Vis-NIR luminescence properties and solar spectral converting mechanism,” J. Mater. Chem.22(5), 2226–2232 (2012). [CrossRef]
  17. D. Q. Chen, Y. S. Wang, Y. L. Yu, P. Huang, and F. Y. Weng, “Quantum cutting downconversion by cooperative energy transfer from Ce3+ to Yb3+ in borate glasses,” J. Appl. Phys.104(11), 116105 (2008). [CrossRef]
  18. A. A. Coelho, TOPAS ACADEMIC. Brisbane: Australia, 2005, version 4.
  19. B. A. Maksimov, V. V. Ilyukhin, Y. A. Kharitonov, and N. V. Belov, “Crystal structure of yttrium oxyorthosilicate Y2O3SiO2 and Y2SiO5,” Kristallografiya15, 926–933 (1970).
  20. R. D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides,” Acta Crystallogr. A32(5), 751–767 (1976). [CrossRef]
  21. L. Pidola, O. Guillot-Noëla, A. Kahn-Hararia, B. Viana, D. Pelencc, and D. Gouriera, “EPR study of Ce3+ ions in lutetium silicate scintillators Lu2Si2O7 and Lu2SiO5,” J. Phys. Chem. Solids67(4), 643–650 (2006). [CrossRef]
  22. A. Denoyer, S. Jandl, B. Viana, O. Guillot-Noel, P. Goldner, D. Pelenc, and F. Thibault, “Optical properties of Yb-doped Y2SiO5 thin films,” Opt. Mater.30(3), 416–422 (2007). [CrossRef]
  23. S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, and B. Ferrand, “Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals,” J. Phys-Condens. Mat.16, 4579–4590 (2004).
  24. H. Jiao, F. H. Liao, S. J. Tian, and X. P. Jing, “Influence of rare earth Sc and La to the luminescent properties of FED blue phosphor Y2SiO5: Ce,” J. Electrochem. Soc.151(7), J39–J42 (2004). [CrossRef]
  25. H. Yokota, M. Yoshida, H. Ishibashi, T. Yano, H. Yamamoto, and S. Kikkawa, “Concentration effect of cerium in (Y0.9-xGd0.1Cex)2SiO5 blue phosphor,” J. Alloy. Comp.495(1), 162–166 (2010). [CrossRef]
  26. E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Physica B404(22), 4426–4430 (2009). [CrossRef]
  27. H. Feng, V. Jary, E. Mihokova, D. Ding, M. Nikl, G. Ren, H. Li, S. Pan, A. Beitlerova, and R. Kucerkova, “Temperature dependence of luminescence characteristics of Lu2(1-x)Y2xSiO5: Ce3+ scintillator grown by the Czochralski method,” J. Appl. Phys.108(3), 033519–033524 (2010). [CrossRef]
  28. H. Matsui, C. N. Xu, Y. Liu, and T. Watanabe, “Optical Spectroscopy of Ce3+-Activated X2-Y2SiO5,” J. Ceram. Soc. Jpn.108(1263), 1003–1006 (2000). [CrossRef]
  29. R. B. Jabbarova, C. Chartier, B. G. Tagieva, O. B. Tagiev, N. N. Musayeva, C. Barthou, and P. Benalloul, “Radiative properties of Eu2+ in BaGa2S4,” J. Phys. Chem. Solids66(6), 1049–1056 (2005). [CrossRef]
  30. S. Saha, P. S. Chowdhury, and A. Patra, “Luminescence of Ce3+ in Y2SiO5 nanocrystals: Role of crystal structure and crystal size,” J. Phys. Chem. B109(7), 2699–2702 (2005). [CrossRef] [PubMed]
  31. B. Han, H. B. Liang, Y. Huang, Y. Tao, and Q. Su, “Vacuum Ultraviolet-Visible Spectroscopic Properties of Tb3+ in Li(Y, Gd)(PO3)4: Tunable Emission, Quantum Cutting, and Energy Transfer,” J. Phys. Chem. C114(14), 6770–6777 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited