OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A519–A529

Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids

Weitao Dai, Daniel Yap, and Gang Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue S4, pp. A519-A529 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (910 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Efficient trapping of the light in a photon absorber or a photodetector can improve its performance and reduce its cost. In this paper we investigate two designs for light-trapping in application to infrared absorption. Our numerical simulations demonstrate that nonabsorptive pyramids either located on top of an absorbing film or having embedded absorbing rods can efficiently enhance the absorption in the absorbing material. A spectrally averaged absorptance of 83% is achieved compared to an average absorptance of 28% for the optimized multilayer structure that has the same amount of absorbing material. This enhancement is explained by the coupled-mode theory. Similar designs can also be applied to solar cells.

© 2012 OSA

OCIS Codes
(040.0040) Detectors : Detectors
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Thin Films

Original Manuscript: March 30, 2012
Revised Manuscript: May 25, 2012
Manuscript Accepted: May 25, 2012
Published: June 15, 2012

Weitao Dai, Daniel Yap, and Gang Chen, "Wideband enhancement of infrared absorption in a direct band-gap semiconductor by using nonabsorptive pyramids," Opt. Express 20, A519-A529 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Alsema, “Energy pay-back time and CO2 emissions of PV systems,” Prog. Photovoltaics8, 17–25 (2000). [CrossRef]
  2. K. Taretto and U. Rau, “Modeling extremely thin absorber solar cells for optimized design,” Prog. Photovoltaics12, 573–591 (2004). [CrossRef]
  3. H. Deckman, C. Roxlo, and E. Yablonovitch, “Maximum statistical increase of optical-absorption in textured semiconductor-films,” Opt. Lett.8, 491–493 (1983). [CrossRef] [PubMed]
  4. P. Sheng, A. Bloch, and R. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar-cells,” Appl. Phys. Lett.43, 579–581 (1983). [CrossRef]
  5. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34, 2476–2482 (1995). [CrossRef] [PubMed]
  6. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  7. L. Hu, X. Chen, and G. Chen, “Surface-plasmon enhanced near-bandgap light absorption in silicon photovoltaics,” J. Comput. Theor. Nanosci.5, 2096–2101 (2008). [CrossRef]
  8. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7, 3249–3252 (2007). [CrossRef] [PubMed]
  9. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10, 1012–1015 (2010). [CrossRef] [PubMed]
  10. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10, 4692–4696 (2010). [CrossRef] [PubMed]
  11. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical Absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett.9, 279–282 (2009). [CrossRef]
  12. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater.9, 239–244 (2010). [CrossRef] [PubMed]
  13. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108, 123102 (2010). [CrossRef]
  14. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  15. G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben, and J. J. Schermer, “26.1% thin-film GaAs solar cell using epitaxial lift-off,” Sol. Energy Mater. Sol. Cells93, 1488–1491 (2009). [CrossRef]
  16. P. Yu, C.-H. Chang, C.-H. Chiu, C.-S. Yang, J.-C. Yu, H.-C. Kuo, S.-H. Hsu, and Y.-C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater.21, 1618–1621 (2009). [CrossRef]
  17. L.-K. Yeh, K.-Y. Lai, G.-J. Lin, P.-H. Fu, H.-C. Chang, C.-A. Lin, and J.-H. He, “Giant efficiency enhancement of GaAs solar cells with graded antireflection layers based on syringelike ZnO nanorod arrays,” Adv. Energy Mater.1, 506–510 (2011). [CrossRef]
  18. K.-S. Han, J.-H. Shin, W.-Y. Yoon, and H. Lee, “Enhanced performance of solar cells with anti-reflection layer fabricated by nano-imprint lithography,” Sol. Energy Mater. Sol. Cells95, 288–291 (2011). [CrossRef]
  19. A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech, 2000).
  20. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181, 687–702 (2010). [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62, 243–249 (1987). [CrossRef]
  23. A. K. Dutta, R. Olah, G. Mizuno, R. Sengupta, J. H. Park, P. Wijewarnasuriya, and N. Dhar, “High efficiency solar cells based on micro-nano scale structures,” Proc. SPIE7683, 768300 (2010)
  24. J. Zhu, C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett.10, 1979–1984 (2010). [CrossRef]
  25. R. Esteban, M. Laroche, and J. J. Greffet, “Dielectric gratings for wide-angle, broadband absorption by thin film photovoltaic cells,” Appl. Phys. Lett.97, 221111 (2010). [CrossRef]
  26. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97, 114302 (2005). [CrossRef]
  27. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984).
  28. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20, 569–572 (2003). [CrossRef]
  29. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA107, 17491–17496 (2010). [CrossRef] [PubMed]
  30. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18, A366–A380 (2010). [CrossRef] [PubMed]
  31. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, 1995).
  32. M. Deubel1, G. von Freymann1, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nat. Mater.3, 444–447 (2004). [CrossRef]
  33. E. Kim, Y. Xia, and G. M. Whitesides, “Polymer microstructures formed by moulding in capillaries,” Nature376, 581–584 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited