OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A530–A544

Enhanced scattering and absorption due to the presence of a particle close to an interface

N. Dahan and J.-J. Greffet  »View Author Affiliations


Optics Express, Vol. 20, Issue S4, pp. A530-A544 (2012)
http://dx.doi.org/10.1364/OE.20.00A530


View Full Text Article

Enhanced HTML    Acrobat PDF (1111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the influence of the presence of an interface on the scattering by a Rayleigh scatterer. The influence of an interface on the spontaneous emission has been known for many years. Here, we study the influence on the extinction cross-section and absorption cross-section. We provide a detailed analysis of interference and near-field effects. We show that the presence of a Rayleigh scatterer may enhance the specular reflection or specular transmission under certain conditions. Finally, we analyze the enhancement of absorption in the bulk in the presence of a small scatterer.

© 2012 OSA

OCIS Codes
(290.0290) Scattering : Scattering
(300.1030) Spectroscopy : Absorption
(350.6050) Other areas of optics : Solar energy

ToC Category:
Scattering

History
Original Manuscript: May 1, 2012
Revised Manuscript: June 5, 2012
Manuscript Accepted: June 5, 2012
Published: June 15, 2012

Virtual Issues
Vol. 7, Iss. 9 Virtual Journal for Biomedical Optics

Citation
N. Dahan and J.-J. Greffet, "Enhanced scattering and absorption due to the presence of a particle close to an interface," Opt. Express 20, A530-A544 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S4-A530


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93, 191113 (2008).
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  3. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photon.2, 299–301 (2008). [CrossRef]
  4. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007). [CrossRef]
  5. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express18, A139–A146 (2010). [CrossRef] [PubMed]
  6. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004). [CrossRef]
  7. O. Stenzel, A. Stendal, K. Voigtsberger, and C. von Borczyskowski, “Enhancement of the photovoltaic conversion efficiency of copper phthalocyanine thin film devices by incorporation of metal clusters,” Sol. Energy Mater. Sol. Cells37, 337–348 (1995). [CrossRef]
  8. R. B. Dunbar, T. Pfadler, and L. Schmidt-Mende, “Highly absorbing solar cells—a survey of plasmonic nanostructures,” Opt. Express20, A177–A189 (2012). [CrossRef] [PubMed]
  9. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1,2693–701 (1970). [CrossRef]
  10. R. R. Chance, A. Prock, and R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys.60, 2744–2748 (1974). [CrossRef]
  11. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am.67, 1607–1615 (1977). [CrossRef]
  12. E. H. Hellen and D. Axelrod, “Fluorescence emission at dielectric and metal-film interfaces,” J. Opt. Soc. Am. B4, 337–350 (1987). [CrossRef]
  13. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A14, 91–104 (1997). [CrossRef]
  14. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J.333, 848–872 (1988). [CrossRef]
  15. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun.261, 368–375 (2006). [CrossRef]
  16. C. Girard and A. Dereux, “Near-field optics theories,” Rep. Prog. Phys.59, 657–699 (1996). [CrossRef]
  17. L. Novotny, “Allowed and forbidden light in near-field optics. II. Interacting dipolar particles,” J. Opt. Soc. Am. A14, 105–113 (1997). [CrossRef]
  18. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, “Anlytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy,” Opt. Express15, 8550–8565 (2007). [CrossRef] [PubMed]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 1983).
  20. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B4, 481–489 (1987). [CrossRef]
  21. I. V. Lindell, A. H. Sihvola, K. O. Muinonen, and P. W. Barber, “Scattering by a small object close to an interface. I. Exact-image theory formulation,” J. Opt. Soc. Am. A8, 472–476 (1991). [CrossRef]
  22. G. Videen, M. G. Turner, V. J. Iafelice, W. S. Bickel, and W. L. Wolfe, “Scattering from a small sphere near a surface,” J. Opt. Soc. Am. A10, 118–126 (1993). [CrossRef]
  23. J. Mertz, “Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description,” J. Opt. Soc. Am. B17, 1906–1913 (2000). [CrossRef]
  24. S. Efrima and H. Metiu, “Classical theory of light scattering by an adsorbed molecule. I. theory,” J. Chem. Phys.70, 1602–1613 (1979). [CrossRef]
  25. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973). [CrossRef]
  26. A. Lakhtakia, “Macroscopic theory of the coupled dipole approximation method,” Opt. Commun.79, 1–5 (1990). [CrossRef]
  27. J.-J. Greffet and F.-R. Ladan, “Comparison between theoretical and experimental scattering of an s-polarized electromagnetic wave by a two-dimensional obstacle on a surface,” J. Opt. Soc. Am. A8, 1261–1269 (1991). [CrossRef]
  28. D. Torrungrueng, B. Ungan, and J. T. Johnson, “Optical theorem for electromagnetic scattering by a three-dimensional scatterer in the presence of a lossless half space,” IEEE Geosci. Remote Sens. Lett.1, 131–135 (2004). [CrossRef]
  29. D. R. Lytle, P. S. Carney, J. C. Schotland, and E. Wolf, “Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields,” Phys. Rev. E71, 056610 (2005). [CrossRef]
  30. S. Bauer, “Optical properties of a metal film and its application as an infrared absorber and as a beam splitter,” Am. J. Phys.60, 257–261 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited