OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A545–A553

Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics

Peng Wang and Rajesh Menon  »View Author Affiliations


Optics Express, Vol. 20, Issue S4, pp. A545-A553 (2012)
http://dx.doi.org/10.1364/OE.20.00A545


View Full Text Article

Enhanced HTML    Acrobat PDF (1545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanophotonics can guide the design of novel structures for light-trapping in ultra-thin photovoltaic cells. Here, we report on the systematic study of the effect of the angle of incidence of sunlight on the performance of such structures. We also conduct a parametric study of a sinusoidal grating and demonstrate that light intensity in the active region averaged over a range of input angles from 0° to 80° can be enhanced by more than 3 times compared to the bare device. Such a broadband light-trapping nanostructure can increase the total daily energy production of a fixed (non-tracking) device by over 60%, compared to a reference device with an anti-reflection coating.

© 2012 OSA

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6188) Thin films : Spectral properties
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Photovoltaics

History
Original Manuscript: April 18, 2012
Revised Manuscript: June 6, 2012
Manuscript Accepted: June 12, 2012
Published: June 25, 2012

Citation
Peng Wang and Rajesh Menon, "Simulation and analysis of the angular response of 1D dielectric nanophotonic light-trapping structures in thin-film photovoltaics," Opt. Express 20, A545-A553 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S4-A545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-film silicon solar cell technology,” Prog. Photovolt. Res. Appl.12(23), 113–142 (2004). [CrossRef]
  2. D. Redfield, “Multiple-pass thin-film silicon solar cell,” Appl. Phys. Lett.25(11), 647–648 (1974). [CrossRef]
  3. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. G. Brooks, “Limiting efficiency of silicon solar cells,” IEEE Trans. Electron. Dev.31(5), 711–716 (1984). [CrossRef]
  4. M. A. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes,” IEEE Trans. Electron. Dev.31(5), 671–678 (1984). [CrossRef]
  5. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  6. P. Campbell and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys.62(1), 243–249 (1987). [CrossRef]
  7. J. R. Nagel and M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express18(S2Suppl 2), A139–A146 (2010). [CrossRef] [PubMed]
  8. S. Pillai, K. R. Catchpole, T. Turpke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105 (2007). [CrossRef]
  9. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  11. Y. C. Lee, C. F. Huang, J. Y. Chang, and M. L. Wu, “Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings,” Opt. Express16(11), 7969–7975 (2008). [CrossRef] [PubMed]
  12. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18(5), 4260–4274 (2010). [CrossRef] [PubMed]
  13. S. B. Mallick, M. Agrawal, and P. Peumans, “Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells,” Opt. Express18(6), 5691–5706 (2010). [CrossRef] [PubMed]
  14. Z. F. Yu, A. Raman, and S. H. Fan, “Nanophotonic light-trapping theory for solar cells,” Appl. Phys., A Mater. Sci. Process.105(2), 329–339 (2011). [CrossRef]
  15. Z. F. Yu, A. Raman, and S. H. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  16. J. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010). [CrossRef] [PubMed]
  17. P. Wang and R. Menon, “Simulation and optimization of 1-D periodic dielectric nanostructures for light-trapping,” Opt. Express20(2), 1849–1855 (2012). [CrossRef] [PubMed]
  18. K. R. Catchpole, “A conceptual model of the diffuse transmittance of lamellar diffraction gratings on solar cells,” J. Appl. Phys.102(1), 013102 (2007). [CrossRef]
  19. L. Fraas and L. Partain, Solar Cells and Their Applications (Wiley, 2010).
  20. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  21. A. Chutinan, N. P. Kherani, and S. Zukotynski, “High-efficiency photonic crystal solar cell architecture,” Opt. Express17(11), 8871–8878 (2009). [CrossRef] [PubMed]
  22. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008). [CrossRef]
  23. H. Hoppe and N. S. Sariciftci, “Organic solar cells: An overview,” J. Mater. Res.19(07), 1924–1945 (2004). [CrossRef]
  24. A. Raman, Z. F. Yu, and S. H. Fan, “Dielectric nanostructures for broadband light trapping in organic solar cells,” Opt. Express19(20), 19015–19026 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited