OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A560–A571

Combined front and back diffraction gratings for broad band light trapping in thin film solar cell

Xianqin Meng, Emmanuel Drouard, Guillaume Gomard, Romain Peretti, Alain Fave, and Christian Seassal  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A560-A571 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1892 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we present the integration of combined front and back 1D and 2D diffraction gratings with different periods, within thin film photovoltaic solar cells based on crystalline silicon layers. The grating structures have been designed considering both the need for incident light absorption enhancement and the technological feasibility. Long wavelength absorption is increased thanks to the long period (750 nm) back grating, while the incident light reflection is reduced by using a short period (250 nm) front grating. The simulated short circuit current in a solar cell combining a front and a back grating structures with a 1.2 µm thick c-Si layer, together with the back electrode and TCO layers, is increased up to 30.3 mA/cm2, compared to 18.4 mA/cm2 for a reference stack, as simulated using the AM1.5G solar spectrum intensity distribution from 300 nm to 1100 nm, and under normal incidence.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(040.6040) Detectors : Silicon
(050.1950) Diffraction and gratings : Diffraction gratings
(050.5298) Diffraction and gratings : Photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:

Original Manuscript: May 11, 2012
Revised Manuscript: June 22, 2012
Manuscript Accepted: June 25, 2012
Published: July 5, 2012

Xianqin Meng, Emmanuel Drouard, Guillaume Gomard, Romain Peretti, Alain Fave, and Christian Seassal, "Combined front and back diffraction gratings for broad band light trapping in thin film solar cell," Opt. Express 20, A560-A571 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Franken, R. L. Stolk, H. Li, C. H. M. van der Werf, J. K. Rath, and R. E. I. Schropp, “Understanding light trapping by light scattering textured back electrodes in thin film n-i-p-type silicon solar cells,” J. Appl. Phys.102(1), 014503 (2007). [CrossRef]
  2. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy77(6), 917–930 (2004). [CrossRef]
  3. M. Peters, J. C. Goldschmidt, T. Kirchartz, and B. Bläsi, “The photonic light trap–Improved light trapping in solar cells by angularly selective filters,” Sol. Energy Mater. Sol. Cells93(10), 1721–1727 (2009). [CrossRef]
  4. O. El Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. Roca I Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express18(S3Suppl 3), A293–A299 (2010). [CrossRef] [PubMed]
  5. J. G. Mutitu, S. Shi, C. Chen, T. Creazzo, A. Barnett, C. Honsberg, and D. W. Prather, “Thin film solar cell design based on photonic crystal and diffractive grating structures,” Opt. Express16(19), 15238–15248 (2008). [CrossRef] [PubMed]
  6. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp, “Light trapping in thin-film silicon solar cells with submicron surface texture,” Opt. Express17(25), 23058–23065 (2009). [CrossRef] [PubMed]
  7. R. Biswas and C. Xu, “Nano-crystalline silicon solar cell architecture with absorption at the classical 4n2 limit,” Opt. Express19(S4), A664–672 (2011). [CrossRef]
  8. J. Gjessing, E. S. Marstein, and A. S. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Opt. Express18(6), 5481–5495 (2010). [CrossRef] [PubMed]
  9. F. J. Beck, A. Polman, and K. R. Catchpole, “Tunable light trapping for solar cells using localized surface plasmons,” J. Appl. Phys.105(11), 114310 (2009). [CrossRef]
  10. G. Gomard, E. Drouard, X. Letartre, X. Meng, A. Kaminski, A. Fave, M. Lemiti, E. Garcia-Caurel, and C. Seassal, “Two-dimensional photonic crystal for absorption enhancement in hydrogenated amorphous silicon thin film solar cells,” J. Appl. Phys.108(12), 123102 (2010). [CrossRef]
  11. H. Sai, H. Fujiwara, and M. Kondo, “Back surface reflectors with periodic textures fabricated by self-ordering process for light ctrapping in thin-film microcrystalline silicon solar cells,” Sol. Energy Mater. Sol. Cells93(6-7), 1087–1090 (2009). [CrossRef]
  12. M. Vanecek, O. Babchenko, A. Purkrt, J. Holovsky, N. Neykova, A. Poruba, Z. Remes, J. Meier, and U. Kroll, “Nanostructured three-dimensional thin film silicon solar cells with very high efficiency potential,” Appl. Phys. Lett.98(16), 163503 (2011). [CrossRef]
  13. C. G. Granqvist and A. Hultåker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002). [CrossRef]
  14. J. Y. Chen and K. W. Sun, “Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer,” Sol. Energy Mater. Sol. Cells94(3), 629–633 (2010). [CrossRef]
  15. D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” J. Appl. Phys.103(9), 093102 (2008). [CrossRef]
  16. J. Chen, Q. K. Wang, and H. H. Li, “Microstructured design of metallic diffraction gratings for light trapping in thin-film silicon solar cells,” Opt. Commun.283(24), 5236–5244 (2010). [CrossRef]
  17. J. S. Cho, S. Baek, and J. C. Lee, “Surface texturing of sputtered ZnO:Al/Ag back reflectors for flexible silicon thin-film solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1852–1858 (2011). [CrossRef]
  18. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett.35(3), 276–278 (2010). [CrossRef] [PubMed]
  19. S. H. Zaidi, J. M. Gee, and D. S. Ruby, “Diffraction grating structures in solar cells,” in Twenty-Eighth IEEE Photovolt. Spec. Conf., 395–398 (2000).
  20. K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett.12(3), 1616–1619 (2012). [CrossRef] [PubMed]
  21. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2005).
  22. http://www.lumerical.com/
  23. J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003).
  24. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1985).
  25. X. Meng, G. Gomard, O. El Daif, E. Drouard, R. Orobtchouk, A. Kaminski, A. Fave, M. Lemiti, A. Abramov, P. Roca i Cabarrocas, and C. Seassal, “Absorbing photonic crystals for silicon thin-film solar cells: Design, fabrication and experimental investigation,” Sol. Energy Mater. Sol. Cells95, S32–S38 (2011). [CrossRef]
  26. D. O'Shea, T. J. Suleski, A. D. Kathman, and D. W. Prather, Diffractive Optics, Design, Fabrication and Test (SPIE Publications, 2004).
  27. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design and fabrication of photonic crystals in epitaxy-free silicon for ultrathin solar cells,” Proc. SPIE8312, 831207, 831207-7 (2011). [CrossRef]
  28. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20(S2Suppl 2), A224–A244 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited