OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A606–A621

Design of high efficiency organic solar cell with light trapping

L. Song and A. Uddin  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A606-A621 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (2051 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed a high efficiency organic solar cell with light trapping structure on transference cylindrical substrate. An electrical and optical simulation of the light trapping structure has been performed on the basis of finite element and transfer matrix formalism methods. Absorption spectrum, internal quantum efficiency, external quantum efficiency, maximum power output and efficiency of the organic solar cell are simulated and presented in terms of three variables: the height, diameter of the glass substrate and the thickness of the organic active layer. The efficiency of the proposed organic solar cell with light trapping structure is enhanced by a factor of 2 than the similar structure on the flat plain glass substrate. The optimum organic active layer thickness to achieve the highest efficiency is shifted from 65 to 20 nm. Finally, we have investigated the effect of light incident angle on the performance of the proposed cell structure.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(220.0220) Optical design and fabrication : Optical design and fabrication

ToC Category:

Original Manuscript: March 26, 2012
Revised Manuscript: June 27, 2012
Manuscript Accepted: June 30, 2012
Published: July 10, 2012

L. Song and A. Uddin, "Design of high efficiency organic solar cell with light trapping," Opt. Express 20, A606-A621 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, “Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends,” Nat. Mater.7(2), 158–164 (2008). [CrossRef] [PubMed]
  2. Konarka, “Single junction solar cell by Konarka with an efficiency of 8.3% on an area of 1 cm2”.
  3. G. Dennler, M. C. Scharber, and C. J. Brabec, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. (Deerfield Beach Fla.)21(13), 1323–1338 (2009). [CrossRef]
  4. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology,” Adv. Funct. Mater.15(10), 1617–1622 (2005). [CrossRef]
  5. M. S. Ryu, H. J. Cha, and J. Jang, “Effects of thermal annealing of polymer:fullerene photovoltaic solar cells for high efficiency,” Curr. Appl. Phys.10(2), S206–S209 (2010). [CrossRef]
  6. A. J. Moulé and K. Meerholz, “Controlling morphology in polymer–fullerene mixtures,” Adv. Mater. (Deerfield Beach Fla.)20(2), 240–245 (2008). [CrossRef]
  7. T. Kirchartz, K. Taretto, and U. Rau, “Efficiency limits of organic bulk heterojunction solar cells,” J. Phys. Chem. C113(41), 17958–17966 (2009). [CrossRef]
  8. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, “Polymer-based solar cells,” Mater. Today10(11), 28–33 (2007). [CrossRef]
  9. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt.34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  10. J. E. Cotter, “Optical intensity of light in layers of silicon with rear diffuse reflectors,” J. Appl. Phys.84(1), 81–98 (1998). [CrossRef]
  11. Y. Yi, L. Zeng, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89, 111111 (2006).
  12. H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, “Nanoscale morphology of conjugated polymer/fullerene-based bulk- heterojunction solar cells,” Adv. Funct. Mater.14(10), 1005–1011 (2004). [CrossRef]
  13. S. D. Zilio, K. Tvingstedt, O. Inganäs, and M. Tormen, “Fabrication of a light trapping system for organic solar cells,” Microelectron. Eng.86(4-6), 1150–1154 (2009). [CrossRef]
  14. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E. D. Peterson, J. Liu, G. Fang, and D. L. Carroll, “Photovoltaic–thermal solar energy collectors based on optical tubes,” Sol. Energy85(3), 450–454 (2011). [CrossRef]
  15. Y. Li, W. Nie, J. Liu, A. Partridge, and D. L. Carroll, “The optics of organic photovoltaics: fiber-based devices,” IEEE J. Sel. Top. Quantum Electron.16(6), 1827–1837 (2010). [CrossRef]
  16. Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D.L. Carroll, “Tube-based geometries for organic photovoltaics,” Appl. Phys. Lett.96, 243503 (2010).
  17. M. R. Lee, R. D. Eckert, K. Forberich, G. Dennler, C. J. Brabec, and R. A. Gaudiana, “Solar power wires based on organic photovoltaic materials,” Science324(5924), 232–235 (2009). [CrossRef] [PubMed]
  18. J. Liu, M. A. G. Namboothiry, and D. L. Carroll, “Optical geometries for fiber-based organic photovoltaics,” Appl. Phys. Lett.90(13), 133515 (2007). [CrossRef]
  19. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, “Modeling photocurrent action spectra of photovoltaic devices based on organic thin films,” J. Appl. Phys.86(1), 487–496 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited