OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A622–A629

Nonimaging optics in luminescent solar concentration

B. D. Markman, R. R. Ranade, and N. C. Giebink  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A622-A629 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (3569 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.

© 2012 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(080.4298) Geometric optics : Nonimaging optics

ToC Category:
Solar Concentrators

Original Manuscript: June 1, 2012
Revised Manuscript: July 2, 2012
Manuscript Accepted: July 4, 2012
Published: July 10, 2012

B. D. Markman, R. R. Ranade, and N. C. Giebink, "Nonimaging optics in luminescent solar concentration," Opt. Express 20, A622-A629 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Winston, Selected Papers on Nonimaging Optics (SPIE, New York, NY, 1995).
  2. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic, New York, NY, 2005).
  3. W. T. Welford and R. Winston, High Collection Non-Imaging Optics (Academic, New York, 1989).
  4. J. J. O'Gallagher, Nonimaging Optics in Solar Energy (Morgan & Claypool, 2008).
  5. J. Chaves, Introduction to Nonimaging Optics (CRC Press, New York, NY, 2008).
  6. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012). [CrossRef]
  7. A. Goetzberger, “Fluorescent Solar Energy Concentrators: Principle and Present State of Development,” in High-Efficient Low-Cost Photovoltaics: Recent Developments, V. H. R. G. A. Petrova-Koch, ed. (2009), pp. 159–176.
  8. W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators--a review of recent results,” Opt. Express16(26), 21773–21792 (2008). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am.70(11), 1362–1363 (1980). [CrossRef]
  10. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990). [CrossRef]
  11. R. Winston, C. Wang, and W. Zhang, “Beating the optical Liouville theorem (How does geometrical optics know the second law of thermodynamics?),” Proc. SPIE7423, 742309, 742309-3 (2009). [CrossRef]
  12. A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators—a review,” Sol. Cells4(1), 3–23 (1981). [CrossRef]
  13. D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl.20(1), 93–99 (2012). [CrossRef]
  14. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun.2, 343 (2011). [CrossRef] [PubMed]
  15. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics5(11), 694–702 (2011). [CrossRef]
  16. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008). [CrossRef] [PubMed]
  17. A. Goetzberger and O. Schirmer, “Second-stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. (Berl.)19(1), 53–58 (1979). [CrossRef]
  18. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron.14(5), 1312–1322 (2008). [CrossRef]
  19. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt.48(2), 212–220 (2009). [CrossRef] [PubMed]
  20. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt.18(18), 3090–3110 (1979). [CrossRef] [PubMed]
  21. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett.98(8), 081103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited