OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A641–A654

Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles

P. Spinelli and A. Polman  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A641-A654 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1098 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metal nanoparticles are efficient antennas for light. If embedded in a semiconductor material, they can enhance light absorption in the semiconductor, due to the strong plasmonic near-field coupling. We use numerical simulations to calculate the absorption enhancement in the semiconductor using Ag nanoparticles with diameters in the range 5–60 nm for crystalline Si, amorphous Si, a polymer blend, and Fe2O3. We study single Ag particles in a 100×100×100 nm semiconductor volume, as well as periodic arrays with 100 nm pitch. We find that in all cases Ohmic dissipation in the metal is a major absorption factor. In crystalline Si, while Ag nanoparticles cause a 5-fold enhancement of the absorbance in the weakly absorbing near-bandgap spectral range, Ohmic losses in the metal dominate the absorption. We conclude crystalline Si cannot be sensitized with Ag nanoparticles in a practical way. Similar results are found for Fe2O3. The absorbance in the polymer blend can be enhanced by up to 100% using Ag nanoparticles, at the expense of strong additional absorption by Ohmic losses. Amorphous Si cannot be sensitized with Ag nanoparticles due to the mismatch between the plasmon resonance and the bandgap of a-Si. By using sensitization with Ag nanoparticles the thickness of some semiconductor materials can be reduced while keeping the same absorbance, which has benefits for materials with short carrier diffusion lengths. Scattering mechanisms by plasmonic nanoparticles that are beneficial for enhanced light trapping in solar cells are not considered in this paper.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: May 29, 2012
Revised Manuscript: June 29, 2012
Manuscript Accepted: July 2, 2012
Published: July 16, 2012

P. Spinelli and A. Polman, "Prospects of near-field plasmonic absorption enhancement in semiconductor materials using embedded Ag nanoparticles," Opt. Express 20, A641-A654 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys.330(3), 377–445 (1908). [CrossRef]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 2008).
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010). [CrossRef] [PubMed]
  4. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett.69(16), 2327–2329 (1996). [CrossRef]
  5. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett.86(6), 063106 (2005). [CrossRef]
  6. K. R. Catchpole and A. Polman, “Design principle for particle plasmon enhanced solar cells,” Appl. Phys. Lett.93(19), 191113 (2008). [CrossRef]
  7. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,” Appl. Phys. Lett.95, 053115 (2009). [CrossRef]
  8. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, and A. Polman, “Optical impedance matching using coupled plasmonic nanoparticle array,” Nano Lett.11, 1760–1765 (2011). [CrossRef] [PubMed]
  9. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett.89(9), 093103 (2006). [CrossRef]
  10. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101, 093105 (2007). [CrossRef]
  11. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors,” Appl. Phys. Lett.95, 183503 (2009). [CrossRef]
  12. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express18, A237–A245 (2010). [CrossRef] [PubMed]
  13. V. E. Ferry, M. A. Verschuuren, M. van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultra-thin film a-Si:H solar cells,” Nano Lett.11, 4239–4245 (2011). [CrossRef] [PubMed]
  14. P. Spinelli, V. E. Ferry, C. van Lare, J. van de Groep, M.A. Verschuuren, R.E.I. Schropp, H.A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14, 024002 (2012). [CrossRef]
  15. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys.96, 7519–7526 (2004). [CrossRef]
  16. S. S. Kim, S.-I. Na, J. Jo, D. Y. Kim, and Y.-C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett.93, 073307 (2008). [CrossRef]
  17. A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero, and J. van de Lagemaat, “Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,” Appl. Phys. Lett.92, 013504 (2008). [CrossRef]
  18. N. C. Lindquist, W. A. Luhman, S. H. Oh, and R. J. Holmes, “Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells,” Appl. Phys. Lett.93, 123308 (2008). [CrossRef]
  19. S. Vedraine, P. Torchio, H. Derbal-Habak, F. Flory, V. Brissonneau, D. Duche, J. J. Simon, and L. Escoubas, “Plasmonic structures integrated in organic solar cells,” Proc. SPIE7772, 777219 (2010). [CrossRef]
  20. M. Westphalen, U. Kreibig, J. Rostalski, H. Lüth, and D. Meissner, “Metal cluster enhanced organic solar cells,” Sol. Energy Mater. Sol. Cells61, 97–105 (2000). [CrossRef]
  21. C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett.92, 013113 (2008). [CrossRef]
  22. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc.131, 8407–8409 (2009). [CrossRef] [PubMed]
  23. E. Thimsen, F. Le Formal, M. Grätzel, and S. C. Warren, “Influence of plasmonic Au nanoparticles on the photoactivity of Fe2O3 electrodes for water splitting,” Nano Lett.11, 35–43 (2011). [CrossRef]
  24. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett.92, 053110 (2008). [CrossRef]
  25. M. Kirkengena, J. Bergli, and Y. M. Galperin, “Direct generation of charge carriers in c-Si solar cells due to embedded nanoparticles,” J. Appl. Phys.102, 093713 (2007). [CrossRef]
  26. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010). [CrossRef] [PubMed]
  27. A. Alù and N. Engheta, “Effect of small random disorders and imperfections on the performance of arrays of plasmonic nanoparticles,” New J. Phys.12, 013015 (2010). [CrossRef]
  28. A. Alù and N. Engheta, “Multifrequency optical invisibility cloak with layered plasmonic shells,” Phys. Rev. Lett.100, 113901 (2008). [CrossRef] [PubMed]
  29. K. Tanabe, “A review of ultrahigh efficiency III–V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,” Energies2(3), 504–530 (2009). [CrossRef]
  30. FDTD solutions ( www.lumerical.com ).
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  32. L. H. Slooff, S. C. Veenstra, J. M. Kroo, D. J. D. Moet, J. Sweelssen, and M. M. Koetse “Determining the internal quantum efficiency of highly efficient polymer solar cells through optical modeling,” Appl. Phys. Lett.90, 143506 (2007). [CrossRef]
  33. I. Cesar, K. Sivula, A. Kay, R. Zboril, and M. J. Grätzel, “Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting,” Phys. Chem. C113, 772–782 (2009). [CrossRef]
  34. S. Vedraine, P. Torchio, D. Duche, F. Flory, J. J. Simon, J. Le Rouzo, and L. Escoubas, “Intrinsic absorption of plasmonic structures for organic solar cells,” Sol. Energy Mater. Sol. Cells95, S57–S64 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited