OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A655–A668

Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors

Paul P. C. Verbunt, Shufen Tsoi, Michael G. Debije, Dirk. J. Boer, Cees W.M. Bastiaansen, Chi-Wen Lin, and Dick K. G. de Boer  »View Author Affiliations


Optics Express, Vol. 20, Issue S5, pp. A655-A668 (2012)
http://dx.doi.org/10.1364/OE.20.00A655


View Full Text Article

Enhanced HTML    Acrobat PDF (1332 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Organic wavelength-selective mirrors are used to reduce the loss of emitted photons through the surface of a luminescent solar concentrator (LSC). A theoretical calculation suggests that application of a 400 nm broad reflector on top of an LSC containing BASF Lumogen Red 305 as a luminophore can reflect 91% of all surface emitted photons back into the device. Used in this way, such broad reflectors could increase the edge-emission efficiency of the LSC by up to 66%. Similarly, 175 nm broad reflectors could increase efficiency up to 45%. Measurements demonstrate more limited effectiveness and dependency on the peak absorbance of the LSC. At higher absorbance, the increased number of internal re-absorption events reduces the effectiveness of the reflectors, leading to a maximum increase in LSC efficiency of ~5% for an LSC with a peak absorbance of 1. Reducing re-absorption by reducing dye concentration or the coverage of the luminophore coating results in an increase in LSC efficiency of up to 30% and 27%, respectively.

© 2012 OSA

OCIS Codes
(230.1480) Optical devices : Bragg reflectors
(230.3720) Optical devices : Liquid-crystal devices
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Solar Concentrators

History
Original Manuscript: May 2, 2012
Revised Manuscript: June 12, 2012
Manuscript Accepted: June 15, 2012
Published: July 18, 2012

Citation
Paul P. C. Verbunt, Shufen Tsoi, Michael G. Debije, Dirk. J. Broer, Cees W.M. Bastiaansen, Chi-Wen Lin, and Dick K. G. de Boer, "Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors," Opt. Express 20, A655-A668 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S5-A655


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt.15(10), 2299–2300 (1976). [CrossRef] [PubMed]
  2. A. Goetzberger and W. Greube, “Solar energy conversion with fluorescent collectors,” Appl. Phys., A Mater. Sci. Process.14, 123–139 (1977).
  3. J. A. Levitt and W. H. Weber, “Materials for luminescent greenhouse solar collectors,” Appl. Opt.16(10), 2684–2689 (1977). [CrossRef] [PubMed]
  4. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments11(4), 303–317 (1989). [CrossRef]
  5. R. Reisfeld, D. Shamrakov, and C. Jorgensen, “Photostable solar concentrators based on fluorescent glass films,” Sol. Energy Mater. Sol. Cells33(4), 417–427 (1994). [CrossRef]
  6. M. G. Debije, P. P. C. Verbunt, P. J. Nadkarni, S. Velate, K. Bhaumik, S. Nedumbamana, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Promising fluorescent dye for solar energy conversion based on a perylene perinone,” Appl. Opt.50(2), 163–169 (2011). [CrossRef] [PubMed]
  7. A. J. Chatten, K. W. J. Barnham, B. F. Buxton, N. J. Ekins-Daukes, and M. A. Malik, “A new approach to modelling quantum dot concentrators,” Sol. Energy Mater. Sol. Cells75(3-4), 363–371 (2003). [CrossRef]
  8. S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices,” Sol. Energy81(6), 813–821 (2007). [CrossRef]
  9. V. Sholin, J. D. Olson, and S. A. Carter, “Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting,” J. Appl. Phys.101(12), 123114 (2007). [CrossRef]
  10. G. V. Shcherbatyuk, R. H. Inman, C. Wang, R. Winston, and S. Ghosh, “Viability of using near infrared PbS quantum dots as active materials in luminescent solar concentrators,” Appl. Phys. Lett.96(19), 191901 (2010). [CrossRef]
  11. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012). [CrossRef]
  12. M. G. Debije, P. P. C. Verbunt, B. C. Rowan, B. S. Richards, and T. L. Hoeks, “Measured surface loss from luminescent solar concentrator waveguides,” Appl. Opt.47(36), 6763–6768 (2008). [CrossRef] [PubMed]
  13. C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc.29(140), 883 (1933). [CrossRef]
  14. M. G. Debije, M.-P. Van, P. P. C. Verbunt, M. J. Kastelijn, R. H. L. van der Blom, D. J. Broer, and C. W. M. Bastiaansen, “Effect on the output of a luminescent solar concentrator on application of organic wavelength-selective mirrors,” Appl. Opt.49(4), 745–751 (2010). [CrossRef] [PubMed]
  15. D. J. Broer, G. N. Mol, J. A. M. M. V. Haaren, and J. Lub, “Photo-induced diffusion in polymerizing chiral-nematic media,” Adv. Mater. (Deerfield Beach Fla.)11(7), 573–578 (1999). [CrossRef]
  16. D. J. Broer, J. Lub, and G. N. Mol, “Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient,” Nature378(6556), 467–469 (1995). [CrossRef]
  17. D. K. G. de Boer, C.-W. Lin, M. P. Giesbers, H. J. Cornelissen, M. G. Debije, P. P. C. Verbunt, and D. J. Broer, “Polarization-independent filters for luminescent solar concentrators,” Appl. Phys. Lett.98(2), 021111 (2011). [CrossRef]
  18. D. W. Berreman, “Optics in stratified and anisotropic media: 4x4-matrix formulation,” J. Opt. Soc. Am.62(4), 502–510 (1972). [CrossRef]
  19. H. Wöhler, M. Fritsch, G. Haas, and D. A. Mlynski, “Characteristic matrix method for stratified anisotropic media: Optical properties of special configurations,” J. Opt. Soc. Am. A8(3), 536–540 (1991). [CrossRef]
  20. N. P. M. Huck, I. Staupe, A. Thirouard, and D. K. G. de Boer, “Light polarization by cholesteric layers,” Jpn. J. Appl. Phys.42(Part 1, No. 8), 5189–5194 (2003). [CrossRef]
  21. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt.48(2), 212–220 (2009). [CrossRef] [PubMed]
  22. S. Tsoi, D. J. Broer, C. W. Bastiaansen, and M. G. Debije, “Patterned dye structures limit reabsorption in luminescent solar concentrators,” Opt. Express18(S4Suppl 4), A536–A543 (2010). [CrossRef] [PubMed]
  23. S. Tsoi, C. W. M. Bastiaansen, and M. G. Debije, “Enhancing light output of fluorescent waveguides with a microlens system,” Proc. 24th Eur. Photovolt. Sol. Energ. Conf., 377–380.
  24. O. Moudam, B. C. Rowan, M. Alamiry, P. Richardson, B. S. Richards, A. C. Jones, and N. Robertson, “Europium complexes with high total photoluminescence quantum yields in solution and in PMMA,” Chem. Commun. (Camb.)43(43), 6649–6651 (2009). [CrossRef] [PubMed]
  25. K. Barnham, J. L. Marques, J. Hassard, and P. O'Brien, “Quantum-dot concentrator and thermodynamic model for the global redshift,” Appl. Phys. Lett.76(9), 1197–1199 (2000). [CrossRef]
  26. D. K. G. de Boer, D. J. Broer, M. G. Debije, W. Keur, A. Meijerink, C. R. Ronda, and P. P. C. Verbunt, “Progress in phosphors and filters for luminescent solar concentrators,” Opt. Express20(S3), A395–A405 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited