OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A729–A739

Plasmonic nanograting design for inverted polymer solar cells

Inho Kim, Doo Seok Jeong, Taek Seong Lee, Wook Seong Lee, and Kyeong-Seok Lee  »View Author Affiliations

Optics Express, Vol. 20, Issue S5, pp. A729-A739 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1098 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic nanostructures for effective light trapping in a variety of photovoltaics have been actively studied. Metallic nanograting structures are one of promising architectures. In this study, we investigated numerically absorption enhancement mechanisms in inverted polymer photovoltaics with one dimensional Ag nanograting in backcontact. An optical spacer layer of TiO2, which also may act as an electron transport layer, was introduced between nanograting pillars. Using a finite-difference-time domain method and performing a modal analysis, we explored correlations between absorption enhancements and dimensional parameters of nanograting such as period as well as height and width. The optimal design of nanograting for effective light trapping especially near optical band gap of an active layer was discussed, and 23% of absorption enhancement in a random polarization was demonstrated numerically with the optimally designed nanograting. In addition, the beneficial role of the optical spacer in plasmonic light trapping was also discussed.

© 2012 OSA

OCIS Codes
(040.5350) Detectors : Photovoltaic
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: July 11, 2012
Revised Manuscript: August 20, 2012
Manuscript Accepted: August 21, 2012
Published: August 24, 2012

Inho Kim, Doo Seok Jeong, Taek Seong Lee, Wook Seong Lee, and Kyeong-Seok Lee, "Plasmonic nanograting design for inverted polymer solar cells," Opt. Express 20, A729-A739 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells,” Adv. Mater. (Deerfield Beach Fla.)23(40), 4636–4643 (2011).
  2. G. Li, R. Zhu, and Y. Yang, “Polymer solar cells,” Nat. Photonics6(3), 153–161 (2012).
  3. D.-H. Ko, J. R. Tumbleston, A. Gadisa, M. Aryal, Y. Liu, R. Lopez, and E. T. Samulski, “Light-trapping nano-structures in organic photovoltaic cells,” J. Mater. Chem.21(41), 16293–16303 (2011).
  4. M. A. Green, “Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices,” Prog. Photovolt. Res. Appl.19(4), 473–477 (2011).
  5. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell Light Trapping beyond the Ray Optic Limit,” Nano Lett.12(1), 214–218 (2012).
  6. S.-J. Tsai, M. Ballarotto, D. B. Romero, W. N. Herman, H.-C. Kan, and R. J. Phaneuf, “Effect of gold nanopillar arrays on the absorption spectrum of a bulk heterojunction organic solar cell,” Opt. Express18(S4), A528–A535 (2010).
  7. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater. (Deerfield Beach Fla.)22(39), 4378–4383 (2010).
  8. G. D. Spyropoulos, M. M. Stylianakis, E. Stratakis, and E. Kymakis, “Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer,” Appl. Phys. Lett.100(21), 213904 (2012).
  9. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, and C.-S. Hsu, “Surface Plasmonic Effects of Metallic Nanoparticles on the Performance of Polymer Bulk Heterojunction Solar Cells,” ACS Nano5(2), 959–967 (2011).
  10. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett.99(11), 113304 (2011).
  11. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
  13. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics6(3), 130–132 (2012).
  14. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010).
  15. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, “Angular response of thin-film organic solar cells with periodic metal back nanostrips,” Opt. Lett.36(4), 478–480 (2011).
  16. J. N. Munday and H. A. Atwater, “Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings,” Nano Lett.11(6), 2195–2201 (2011).
  17. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010).
  18. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011).
  19. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011).
  20. A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, “Grating-coupled surface plasmon enhanced short-circuit current in organic thin-film photovoltaic cells,” ACS Appl. Mater. Interfaces3(6), 2080–2084 (2011).
  21. L.-M. Chen, Z. Xu, Z. Hong, and Y. Yang, “Interface investigation and engineering - achieving high performance polymer photovoltaic devices,” J. Mater. Chem.20(13), 2575–2598 (2010).
  22. S. K. Hau, H.-L. Yip, N. S. Baek, J. Zou, K. O'Malley, and A. K. Y. Jen, “Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer,” Appl. Phys. Lett.92(25), 253301 (2008).
  23. F. Zhang, X. Xu, W. Tang, J. Zhang, Z. Zhuo, J. Wang, J. Wang, Z. Xu, and Y. Wang, “Recent development of the inverted configuration organic solar cells,” Sol. Energy Mater. Sol. Cells95(7), 1785–1799 (2011).
  24. J. Meiss, M. K. Riede, and K. Leo, “Towards efficient tin-doped indium oxide (ITO)-free inverted organic solar cells using metal cathodes,” Appl. Phys. Lett.94(1), 013303 (2009).
  25. M. Manceau, D. Angmo, M. Jørgensen, and F. C. Krebs, “ITO-free flexible polymer solar cells: From small model devices to roll-to-roll processed large modules,” Org. Electron.12(4), 566–574 (2011).
  26. J. M. Hammer, G. Ozgur, G. A. Evans, and J. K. Butler, “Integratable 40 dB optical waveguide isolators using a resonant-layer effect with mode coupling,” J. Appl. Phys.100(10), 103103 (2006).
  27. G. A. Evans, (Southern Methodist University, Dallas, 1998).
  28. P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, Singapore, 1988).
  29. F. Monestier, J.-J. Simon, P. Torchio, L. Escoubas, F. Flory, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Sol. Energy Mater. Sol. Cells91(5), 405–410 (2007).
  30. D. R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 86th ed. (CRC Press, London: Taylor and Francis, 2004).
  31. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, “Bulk heterojunction solar cells with internal quantum efficiency approaching 100%,” Nat. Photonics3(5), 297–302 (2009).
  32. R. Kroon, M. Lenes, J. C. Hummelen, P. W. M. Blom, and B. de Boer, “Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years),” Pol. Rev.48(3), 531–582 (2008).
  33. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B Condens. Matter54(9), 6227–6244 (1996).
  34. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, “Efficient inverted polymer solar cells with directly patterned active layer and silver back grating,” J. Phys. Chem. C116(12), 7200–7206 (2012).
  35. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  36. R. Dynich, A. Ponyavina, and V. Filippov, “Local field enhancement near spherical nanoparticles in absorbing media,” J. Appl. Spectrosc.76(5), 705–710 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited