OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A799–A805

Enhancement of laser action in ZnO nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes

Shih-Hao Cheng, Yun-Chieh Yeh, Meng-Lin Lu, Chun-Wei Chen, and Yang-Fang Chen  »View Author Affiliations

Optics Express, Vol. 20, Issue S6, pp. A799-A805 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (923 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the discovery of an enhancement of the random laser action in a nanocomposite comprising reduced graphene oxide nanoflakes and ZnO nanorods. We show that both emission intensity and lasing threshold exhibit an obvious improvement. Based on our theoretical calculations, the mechanism underlying the enhanced stimulated emission can be attributed to coupling between the optical transition and the surface plasmon resonance of the reduced graphene oxide nanoflakes, induced by the ZnO nanorod surface roughness. The approach we describe here will be very useful for the future development of high-efficiency optoelectronic devices and offers an alternative route for application of reduced graphene oxide.

© 2012 OSA

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3610) Lasers and laser optics : Lasers, ultraviolet
(160.4760) Materials : Optical properties
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: August 10, 2012
Revised Manuscript: September 7, 2012
Manuscript Accepted: September 7, 2012
Published: September 12, 2012

Shih-Hao Cheng, Yun-Chieh Yeh, Meng-Lin Lu, Chun-Wei Chen, and Yang-Fang Chen, "Enhancement of laser action in ZnO nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes," Opt. Express 20, A799-A805 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Lu, H. Y. Lin, T. T. Chen, and Y. F. Chen, “Random lasing in the composites consisting of photonic crystals and semiconductor nanowires,” Appl. Phys. Lett.99(9), 091106 (2011). [CrossRef]
  2. J. Min Lee, J. Yi, W. Woo Lee, H. Yong Jeong, T. Jung, Y. Kim, and W. Il Park, “ZnO nanorods-graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes,” Appl. Phys. Lett.100(6), 061107 (2012). [CrossRef]
  3. Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science312(5771), 242–246 (2006). [CrossRef] [PubMed]
  4. Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, “Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells,” Small6(2), 307–312 (2010). [CrossRef] [PubMed]
  5. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nat. Mater.4(1), 42–46 (2005). [CrossRef]
  6. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science292(5523), 1897–1899 (2001). [CrossRef] [PubMed]
  7. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Optically pumped lasing of ZnO at room temperature,” Appl. Phys. Lett.70(17), 2230 (1997). [CrossRef]
  8. A. B. Djurišić and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small2(8-9), 944–961 (2006). [CrossRef] [PubMed]
  9. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306(5696), 666–669 (2004). [CrossRef] [PubMed]
  10. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature438(7065), 197–200 (2005). [CrossRef] [PubMed]
  11. S. W. Hwang, D. H. Shin, C. O. Kim, S. H. Hong, M. C. Kim, J. Kim, K. Y. Lim, S. Kim, S.-H. Choi, K. J. Ahn, G. Kim, S. H. Sim, and B. H. Hong, “Plasmon-enhanced ultraviolet photoluminescence from hybrid structures of graphene/ZnO films,” Phys. Rev. Lett.105(12), 127403 (2010). [CrossRef] [PubMed]
  12. E. H. Hwang, R. Sensarma, and S. Das Sarma, “Plasmon-phonon coupling in graphene,” Phys. Rev. B82(19), 195406 (2010). [CrossRef]
  13. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science320(5881), 1308 (2008). [CrossRef] [PubMed]
  14. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010). [CrossRef] [PubMed]
  15. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958). [CrossRef]
  16. G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, and M. Chhowalla, “Blue photoluminescence from chemically derived graphene oxide,” Adv. Mater. (Deerfield Beach Fla.)22(4), 505–509 (2010). [CrossRef] [PubMed]
  17. C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and V. Olevano, “Tunable photoluminescence from graphene oxide,” Angew. Chem. Int. Ed., doi:. [CrossRef]
  18. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, “Enhancement of ZnO light emission via coupling with localized surface plasmon of Ag island film,” Appl. Phys. Lett.92(4), 041119 (2008). [CrossRef]
  19. A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, “Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance,” Appl. Phys. Lett.90(23), 231106 (2007). [CrossRef]
  20. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004). [CrossRef] [PubMed]
  21. J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. F. Chen, “Giant enhancement of bandgap emission of ZnO nanorods by platinum nanoparticles,” Nanotechnology17(6), 4391–4394 (2006). [CrossRef]
  22. C. S. Wang, H. Y. Lin, T. H. Lin, and Y. F. Chen, “Enhancement of random lasing assisted by light scattering and resonance energy transfer based on ZnO/SnO nanocomposites,” AIP Adv.2(1), 012133 (2012). [CrossRef]
  23. Y. T. Chen and Y. F. Chen, “Enhanced random lasing in ZnO nanocombs assisted by Fabry-Perot resonance,” Opt. Express19(9), 8728–8734 (2011). [CrossRef] [PubMed]
  24. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice, and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy,” Carbon47(1), 145–152 (2009). [CrossRef]
  25. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature368(6470), 436–438 (1994). [CrossRef]
  26. Y. Liu and R. F. Willis, “Plasmon-phonon strongly coupled mode in epitaxial graphene,” Phys. Rev. B81(8), 081406 (2010). [CrossRef]
  27. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  28. T. Eberlein, U. Bangert, R. Nair, R. Jones, M. Gass, A. Bleloch, K. Novoselov, A. Geim, and P. Briddon, “Plasmon spectroscopy of free-standing graphene films,” Phys. Rev. B77(23), 233406 (2008). [CrossRef]
  29. P. E. Trevisanutto, C. Giorgetti, L. Reining, M. Ladisa, and V. Olevano, “Ab initio GW many-body effects in graphene,” Phys. Rev. Lett.101(22), 226405 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited