OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 20, Iss. S6 — Nov. 5, 2012
  • pp: A836–A842

Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells

Yu-Kuang Liao, Shou-Yi Kuo, Woei-Tyng Lin, Fang-I Lai, Dan-Hua Hsieh, Min-An Tsai, Shih-Chen Chen, Ding-Wen Chiou, Jen-Chuang Chang, Kaung-Hsiung Wu, Shun-Jen Cheng, and Hao-Chung Kuo  »View Author Affiliations

Optics Express, Vol. 20, Issue S6, pp. A836-A842 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we examine photoluminescence spectra of Cu(In,Ga)Se2 (CIGS) via temperature-dependent and power-dependent photoluminescence (PL). Donor-acceptor pair (DAP) transition, near-band-edge transition were identified by their activation energies. S-shaped displacement of peak position was observed and was attributed to carrier confinement caused by potential fluctuation. This coincides well with the obtained activation energy at low temperature. We also present a model for transition from VSe to VIn and to VCu which illustrates competing mechanisms between DAPs recombinations.

© 2012 OSA

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(160.5335) Materials : Photosensitive materials

ToC Category:

Original Manuscript: August 20, 2012
Revised Manuscript: September 19, 2012
Manuscript Accepted: September 20, 2012
Published: September 28, 2012

Yu-Kuang Liao, Shou-Yi Kuo, Woei-Tyng Lin, Fang-I Lai, Dan-Hua Hsieh, Min-An Tsai, Shih-Chen Chen, Ding-Wen Chiou, Jen-Chuang Chang, Kaung-Hsiung Wu, Shun-Jen Cheng, and Hao-Chung Kuo, "Observation of unusual optical transitions in thin-film Cu(In,Ga)Se2 solar cells," Opt. Express 20, A836-A842 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, “New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%,” Prog. Photovolt. Res. Appl. 19(7), 894–897 (2011). [CrossRef]
  2. S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, “Defect physics of the CuInSe2 chalcopyrite semiconductor,” Phys. Rev. B 57(16), 9642–9656 (1998). [CrossRef]
  3. S. C. Chen, Y. K. Liao, H. J. Chen, C. H. Chen, C. H. Lai, Y. L. Chueh, H. C. Kuo, K. H. Wu, J. Y. Juang, S. J. Cheng, T. P. Hsieh, and T. Kobayashi, “Ultrafast carrier dynamics in Cu(In,Ga)Se2 thin films probed by femtosecond pump-probe spectroscopy,” Opt. Express 20(12), 12675–12681 (2012). [CrossRef]
  4. S. Shirakata, K. Ohkubo, Y. Ishii, and T. Nakada, “Effects of CdS buffer layers on photoluminescence properties of Cu(In,Ga)Se2 solar cells,” Sol. Energy Mater. Sol. Cells 93(6-7), 988–992 (2009). [CrossRef]
  5. S. I. Jung, K. H. Yoon, S. Ahn, J. Gwak, and J. H. Yun, “Fabrication and characterization of wide band-gap CuGaSe2 thin films for tandem structure,” Curr. Appl. Phys. 10(3), S395–S398 (2010). [CrossRef]
  6. M. A. Contreras, A. M. Gabor, A. L. Tennant, S. Asher, J. Tuttle, and R. Noufi, “16.4% total-area conversion efficiency thin-film polycrystalline MgF2/ZnO/CdS/Cu(In,Ga)Se2/Mo solar cell,” Prog. Photovolt. Res. Appl. 2(4), 287–292 (1994). [CrossRef]
  7. K. Romannathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells,” Prog. Photovolt. Res. Appl. 11(4), 225–230 (2003). [CrossRef]
  8. T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” Solid-State Electron. 56(1), 175–178 (2011). [CrossRef]
  9. N. Rega, S. Siebentritt, J. Albert, S. Nishiwaki, A. Zajogin, M. Ch. Lux-Steiner, R. Kniese, and M. J. Romero, “Excitonic luminescence of Cu(In,Ga)Se2,” Thin Solid Films 480–481, 286–290 (2005). [CrossRef]
  10. K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by postdeposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997). [CrossRef]
  11. S. Shirakata and T. Nakada, “Photoluminescence and time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells,” Phys. Status Solidi., C Curr. Top. Solid State Phys. 6(5), 1059–1062 (2009). [CrossRef]
  12. M. Wagner, I. Dirnstorfer, D. M. Hofmann, M. D. Lampert, F. Karg, and B. K. Meyer, “Characterization of Cu(In,Ga)Se2 thin films I. Cu-rich layers,” Phys. Status Solidi, A Appl. Res. 167(1), 131–142 (1998). [CrossRef]
  13. B. M. Keyes, P. Dippo, W. Metzger, J. AbuShama, and R. Noufi, “Cu(In,Ga)Se2 thin films evolution during growth – a photoluminescence study,” Proceeding of the 29th IEEE Phot. Spec. Conf., 511–514 (2002).
  14. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34(1), 149–154 (1967). [CrossRef]
  15. E. Kuokstis, W. H. Sun, M. Shatalov, J. W. Yang, and M. Asif Khan, “Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers,” Appl. Phys. Lett. 88(26), 261905 (2006). [CrossRef]
  16. M. J. Romero, H. Du, G. Teeter, Y. Yan, and M. M. Al-Jassin, “Comparative study of luminescence and intrinsic point defects in kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications,” Phys. Rev. B 84(16), 165324 (2011). [CrossRef]
  17. J. Mattheis, U. Rau, and J. H. Werner, “Light absorption and emission in semiconductors with band gap fluctuations-A study on Cu(In,Ga)Se2 thin films,” J. Appl. Phys. 101(11), 113519 (2007). [CrossRef]
  18. S. Siebentritt, “What limits the efficiency of chalcopyrite solar cells?” Sol. Energy Sol. Cells. 95(6), 1471–1476 (2011). [CrossRef]
  19. Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ““S-shaped” temperature dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett. 73(10), 1370–1372 (1998). [CrossRef]
  20. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002). [CrossRef]
  21. A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A. Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y. Nakagawa, “Exciton freeze-out and thermally activated relaxation at local potential fluctuations in thick AlxGa1−xN layers,” J. Appl. Phys. 95(9), 4670–4674 (2004). [CrossRef]
  22. T. Yamaguchi, J. Matsufusa, and A. Yoshida, “Optical properties in RF sputtered CuInxGa1−xSe2 thin films,” Appl. Surf. Sci. 70-71, 669–674 (1993). [CrossRef]
  23. K. Yoshino, H. Yokoyama, K. Maeda, T. Ikari, A. Fukuyama, P. J. Fons, A. Yamada, and S. Niki, “Optical characterizations of CuInSe2 epitaxial layers grown by molecular beam epitaxy,” J. Appl. Phys. 86(8), 4354–4359 (1999). [CrossRef]
  24. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys. 86(7), 3721–3728 (1999). [CrossRef]
  25. K. Töpper, J. Bruns, R. Scheer, M. Weber, A. Weidinger, and D. Bräunig, “Photoluminescence of CuInS2 thin films and solar cells modified by post deposition treatments,” Appl. Phys. Lett. 71(4), 482–484 (1997). [CrossRef]
  26. I. Dirnstorfer, D. M. Hofmann, D. Meister, B. K. Meyer, W. Riedl, and F. Karg, “Postgrowth thermal treatment of CuIn(Ga)Se2: Characterization of doping levels in In-rich thin films,” J. Appl. Phys. 85(3), 1423–1428 (1999). [CrossRef]
  27. A. V. Mudryi, V. F. Gremenok, I. A. Victorov, V. B. Zalesski, F. V. Kurdesov, V. I. Kovalevski, M. V. Yakushev, and R. W. Martin, “Optical characterisation of high-quality CuInSe2 thin films synthesised by two-stage selenisation process,” Thin Solid Films 431–432, 193–196 (2003). [CrossRef]
  28. J. H. Schon and E. Bucher, “Comparison of point defects in CuInSe2 and CuGaSe2 single crystals,” Sol. Energy Mater. Sol. Cells 57(3), 229–237 (1999). [CrossRef]
  29. D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, “Kinetics of radiative recombination at randomly distributed donors and acceptors,” Phys. Rev. 140(1A), A202–A220 (1965). [CrossRef]
  30. U. Rau, “Tunneling-enhanced recombination in CuInGaSe2 heterojunction solar cells,” Appl. Phys. Lett. 74(1), 111–113 (1999). [CrossRef]
  31. U. Raw, A. Jasenek, H. W. Schock, F. Engelhardt, and Th. Meyer, “Electronic loss mechanisms in chalcopyrite based heterojunction solar cells,” Thin Solid Films 361–362, 298–302 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited